Skip to main content
Log in

Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We formulate a fourth order modified nodal cubic spline collocation scheme for variable coefficient second order partial differential equations in the unit cube subject to nonzero Dirichlet boundary conditions. The approximate solution satisfies a perturbed partial differential equation at the interior nodes of a uniform \(N\times N\times N\) partition of the cube and the partial differential equation at the boundary nodes. In the special case of Poisson’s equation, the resulting linear system is solved by a matrix decomposition algorithm with fast Fourier transforms at a cost \(O(N^3\log N)\). For the general variable coefficient diffusion-dominated case, the system is solved using the preconditioned biconjugate gradient stabilized method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berikelashvili, G., Gupta, M.M., Mirianashvili, M.: Convergence of fourth order compact difference scheme for three-dimensional convection-diffusion equations. SIAM J. Numer. Anal. 45, 443–455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithm for modified spline collocation for Helmholtz problems. SIAM J. Sci. Comput. 24, 1733–1753 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bialecki, B., Fairweather, G., Karageorghis, A.: Optimal superconvergent one step nodal cubic spline collocation methods. SIAM J. Sci. Comput. 27, 575–598 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms 56, 253–295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bialecki, B., Wang, Z.: Modified nodal cubic spline collocation for elliptic equations. Numer. Methods Partial Differ. Equ. 28, 1817–1839 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Boor, C.: A Practical Guide to Splines, Revised Edition, Applied Mathematical Sciences, vol. 27. Springer-Verlag, New York (2001)

    Google Scholar 

  7. Bjontegaard, T., Maday, Y., Ronquist, E.M.: Fast tensor-product solvers: partially deformed three-dimensional domains. J. Sci. Comput. 39, 28–48 (2009)

    Article  MathSciNet  Google Scholar 

  8. Boisvert, R.F.: A fourth-order-accurate Fourier method for the Helmholtz equation in three dimensions. ACM Trans. Math. Softw. 13, 221–234 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boisvert, R.F.: Algorithm 651: algorithm HFFT–high-order fast-direct solution of the Helmholtz equation. ACM Trans. Math. Softw. 13, 235–249 (1987)

    Article  MathSciNet  Google Scholar 

  10. Ge, L., Zhang, J.: Symbolic computation of high order compact difference schemes for three dimensional linear elliptic partial differential equations with variable coefficients. J. Comput. Appl. Math. 143, 9–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta, M.M., Zhang, J.: High accuracy multigrid solution of the 3D convection-diffusion equation. Appl. Math. Comput. 113, 249–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hadjidimos, A., Houstis, E., Rice, J.R., Vavalis, E.: Iterative line cubic spline collocation methods for elliptic partial differential equations in several dimensions. SIAM J. Sci. Comput. 14, 715–734 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hadjidimos, A., Houstis, E.N., Rice, J.R., Vavalis, E.: Analysis of iterative line spline collocation methods for elliptic partial differential equations. SIAM J. Matrix Anal. Appl. 21, 508–521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pozo, R., Remington, K.: Fast three-dimensional elliptic solvers on distributed network cluster. In: Joubert, G.R., et al. (eds.) Parallel Computing: Trends and Applications, pp. 201–208. Elsevier, Amsterdam (1994)

    Google Scholar 

  15. Samarski, A.A., Nikolaev, E.S.: Numerical Methods for Grid Equations, Volume II, Iterative Methods. Birkhauser (1989)

  16. Tsompanopoulou, P., Vavalis, E.: ADI methods for cubic spline collocation discretizations of elliptic PDEs. SIAM J. Sci. Comput. 19, 341–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsompanopoulou, P., Vavalis, E.: Alternating direction implicit spline collocation methods for elliptic partial differential equations. Tech. report 95-3, Department of Mathematics, University of Crete, Heraklion, Greece (1995, in Greek)

  18. van der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Karageorghis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bialecki, B., Karageorghis, A. Modified nodal cubic spline collocation for three-dimensional variable coefficient second order partial differential equations. Numer Algor 64, 349–383 (2013). https://doi.org/10.1007/s11075-012-9669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9669-4

Keywords

Mathematics Subject Classifications (2010)

Navigation