Advertisement

Numerical Algorithms

, Volume 63, Issue 4, pp 753–777 | Cite as

A computational study of the weak Galerkin method for second-order elliptic equations

  • Lin Mu
  • Junping Wang
  • Yanqiu Wang
  • Xiu Ye
Original Paper

Abstract

The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye (2011) for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established in Wang and Ye (2011). The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.

Keywords

Finite element methods Weak Galerkin methods Elliptic equations 

Mathematics Subject Classifications (2010)

Primary 65N30; Secondary 65N50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19, 7–32 (1985)MathSciNetMATHGoogle Scholar
  2. 2.
    Arnold, D., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bahriawati, C., Carstensen, C.: Three Matlab implementations of the lowest order Raviart–Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5, 333–361 (2005)MathSciNetMATHGoogle Scholar
  4. 4.
    Brezzi, F., Douglas, J., Marini, L.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer (1991)Google Scholar
  6. 6.
    Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov–Galerkin methods. Part I: the transport equation. Comput. Methods Appl. Mech. Eng. 23–24, 1558–1572 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov–Galerkin methods. Part II: optimal test functions. Numer. Methods Parts D. E. 27, 70–105 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Demkowicz, L., Gopalakrishnan, J.: Analysis of the DPG method for the Poisson problem. SIAM J. Numer. Anal. 49, 1788–1809 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kellog, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal., 4, 101– 129 (1976)CrossRefGoogle Scholar
  10. 10.
    Lin, M., Wang, J., Ye, X.: Weak Galerkin finite element methods for second-order elliptic problems on polytopal meshes. arXiv:1204.3655v1 [math.NA]
  11. 11.
    Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method, Lectures Notes in Math. 606. Springer, New York (1977)Google Scholar
  13. 13.
    Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. arXiv:1104.2897v1 [math.NA] (2011)
  14. 14.
    Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. arXiv:1104.2897v1 [math.NA]

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of Arkansas at Little RockLittle RockUSA
  2. 2.Division of Mathematical SciencesNational Science FoundationArlingtonUSA
  3. 3.Department of MathematicsOklahoma State UniversityStillwaterUSA
  4. 4.Department of MathematicsUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations