Numerical Algorithms

, Volume 63, Issue 2, pp 357–367 | Cite as

Symbolic algorithm for solving cyclic penta-diagonal linear systems

  • Ji-Teng Jia
  • Yao-Lin Jiang
Original Paper


In this paper, by using a special matrix factorization, a symbolic computational algorithm is developed to solve the cyclic penta-diagonal linear system. The algorithm is suitable for implementation using Computer Algebra Systems (CASs) such as MATLAB, MATHEMATICA and MAPLE. In addition, an efficient way of evaluating the determinant of a cyclic penta-diagonal matrix is also discussed. Two numerical examples are given for the purpose of illustration.


Cyclic penta-diagonal matrices Linear systems Matrix factorization Determinant Algorithms 

Mathematics Subject Classifications (2010)

15A09 65F30 15A23 33F10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Application. Academic, New York (1967)Google Scholar
  2. 2.
    Demmel, J.W.: Numerical Linear Algebra. SIAM, Philadelphia (1997)MATHCrossRefGoogle Scholar
  3. 3.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  4. 4.
    Jiang, Y.L., Chen, R.M.M.: Computing periodic solutions of linear differential-algebraic equations by waveform relaxation. Math. Comput. 74, 781–804 (2005)MathSciNetMATHGoogle Scholar
  5. 5.
    Amodio, P., Brugnano, L., Politi, T.: Parallel factorization for tridiagonal matrices. SIAM J. Numer. Anal. 30, 813–823 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Jiang, Y.L.: A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations: the continuous-time and discrete-time cases. IEEE Trans. Circuits Syst. I Reg. Pap. 51(9), 1770–1780 (2004)CrossRefGoogle Scholar
  8. 8.
    Lv, X.G., Le, J.: A note on solving nearly penta-diagonal linear systems. Appl. Math. Comput. 204, 707–712 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Neossi Nguetchue, S.N., Abelman, S.: A computational algorithm for solving nearly penta-diagonal linear systems. Appl. Math. Comput. 203, 629–634 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    El-Mikkawy, M., Rahmo, E.: Symbolic algorithm for inverting cyclic pentadiagonal matrices recursively–derivation and implementation. Comput. Math. Appl. 59, 1386–1396 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Jia, J., Kong, Q., Sogabe, T.: A new algorithm for solving nearly penta-diagonal Toeplitz linear systems. Comput. Math. Appl. 63, 1238–1243 (2012)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    McNally, J.M.: A fast algorithm for solving diagonally dominant symmetric pentadiagonal Toeplitz systems. J. Comput. Appl. Math. 234, 995–1005 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Chakraborty, M.: An efficient algorithm for solving general periodic Toeplitz systems. IEEE Trans. Signal Process. 46(3), 784–787 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, M.: On the solution of circulant linear systems. SIAM J. Numer. Anal. 24, 668–683 (1987)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Karawia, A.A.: Two algorithms for solving general backward pentadiagonal linear systems. Int. J. Comput. Math. 87(12), 2823–2830 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    El-Shehawey, M.A., El-Shreef, Gh.A., Al-Henawy, A.Sh.: Analytical inversion of general periodic tridiagonal matrices. J. Math. Anal. Appl. 345, 123–134 (2008)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sogabe, T.: New algorithms for solving periodic tridiagonal and periodic pentadiagonal linear systems. Appl. Math. Comput. 202, 850–856 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Karawia, A.A.: A computational algorithms for solving periodic penta-diagonal linear systems. Appl. Math. Comput. 174, 613–618 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesXi’an Jiaotong UniversityShaanxiChina

Personalised recommendations