Numerical Algorithms

, Volume 61, Issue 3, pp 397–412 | Cite as

Secant-type methods and nondiscrete induction

  • Ioannis K. Argyros
  • Saïd Hilout
Original Paper


The celebrated nondiscrete mathematical induction has been used to improve error bounds of distances involved in the discrete case but not the sufficient convergence conditions for Secant–type methods. We show that using the same information as before, the following advantages can be obtained: weaker sufficient convergence conditions; tighter error bounds on the distances involved and a more precise information on the location of the solution. Numerical examples validating the theoretical conclusions are also provided in this study.


Secant–type methods Banach space Nondiscrete mathematical induction Semilocal convergence Traub’s method Consistent approximation Rate of convergence 

AMS 2000 Subject Classifications

65H10 65B05 65G99 65N30 47H17 49M15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amat, S., Bermúdez, C., Busquier, S., Gretay, J.: Convergence by nondiscrete mathematical induction of a two step secant’s method. Rocky Mountain J. Math. 37, 359–369 (2007)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two–point Newton–like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Argyros, I.K.: New sufficient convergence conditions for the Secant method. Cze. Math. J. 55, 175–187 (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Argyros, I.K.: Convergence and Applications of Newton–Type Iterations. Springer, New York (2008)MATHGoogle Scholar
  5. 5.
    Argyros, I.K., Hilout, S.: Extending the Newton–Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 234, 2993–3006 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Argyros, I.K., Hilout, S.: Convergence conditions for Secant–type methods. Cze. Math. J. 60, 253–272 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optim. 10, 37–48 (1989)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dennis, J.E.: Toward a unified convergence theory for Newton–like methods. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp. 425–472. Academic Press, New York (1971)Google Scholar
  9. 9.
    Deuflhard, P.: Newton methods for nonlinear problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, vol. 35. Springer, Berlin (2004)Google Scholar
  10. 10.
    Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Romero, N., Rubio, M.J.: The Newton method: from Newton to Kantorovich. (Spanish). Gac. R. Soc. Mat. Esp. 13, 53–76 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton–Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Hernández, M.A., Rubio, M.J., Ezquerro, J.A.: Solving a special case of conservative problems by Secant–like method. Appl. Math. Comput. 169, 926–942 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)MATHGoogle Scholar
  14. 14.
    Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower–dimensional formulation. ACM Trans. Graph. 16(1), 74–106 (1997)CrossRefGoogle Scholar
  15. 15.
    Laasonen, P.: Ein überquadratisch konvergenter iterativer algorithmus. Ann. Acad. Sci. Fenn. Ser I 450, 1–10 (1969)MathSciNetGoogle Scholar
  16. 16.
    Ortega, L.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)MATHGoogle Scholar
  17. 17.
    Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Spaces. Academic Press, New York (1973)MATHGoogle Scholar
  18. 18.
    Păvăloiu, I.: Introduction in the theory of approximation of equations solutions. Dacia Ed., Cluj–Napoca (1976)Google Scholar
  19. 19.
    Petzeltová, H., Vrbová, P.: An underrelaxed modification of Newton’s method. Rev. Roum. Math. Pures. Appl. 22, 959–963 (1977)MATHGoogle Scholar
  20. 20.
    Potra, F.A.: An error analysis for the secant method. Numer. Math. 38, 427–445 (1981/82)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Potra, F.A., Pták, V.: Sharp error bounds for Newton’s process. Numer. Math. 34(1), 63–72 (1980)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Potra, F.A., Pták, V.: Nondiscrete induction and iterative processes. Research Notes in Mathematics, vol. 103. Pitman (Advanced Publishing Program), Boston, MA (1984)Google Scholar
  23. 23.
    Proinov, P.D.: New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems. J. Complex. 26, 3–42 (2010)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ren, H., Wu, Q.: Convergence ball of a modified secant method with convergence order 1.839.... Appl. Math. Comput. 188, 281–285 (2007)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Rheinboldt, W.C.: A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5, 42–63 (1968)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Schmidt, J.W.: Die regula falsi für operatiorenin Banachräumen. Z. Angew. Math. Mech. 41, T61–T63 (1961)MATHGoogle Scholar
  27. 27.
    Schmidt, J.W.: Eine Übertragung der Regula Falsi auf Gleichungen in Banachräumen, I. , II., Nichtlineare Gleichungssysteme, (German). Z. Angew. Math. Mech. 43, 97–110 (1963)CrossRefGoogle Scholar
  28. 28.
    Schmidt, J.W., Schwetlick, H.: Ableitungsfreie Verfahren mit hohere Konvergenzgeschwindigkeit. Computing 3, 215–226 (1968)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Sergeev, A.S.: The method of chords (in Russian). Sib. Mat. Z. 2, 282–289 (1961)MathSciNetMATHGoogle Scholar
  30. 30.
    Tapia, R.A.: Classroom notes: the Kantorovich theorem for Newton’s method. Am. Math. Mon. 78(4), 389–392 (1971)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs, New Jersey (1964)Google Scholar
  32. 32.
    Yamamoto, T.: A convergence theorem for Newton–like methods in Banach spaces. Numer. Math. 51, 545–557 (1987)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Zabrejko, P.P., Nguen, D.F.: The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optim. 9, 671–684 (1987)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Zinc̆enko, A.I.: Some approximate methods of solving equations with non–differentiable operators, (Ukrainian), pp. 156–161. Dopovidi Akad. Nauk Ukraïn. RSR (1963)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics SciencesCameron UniversityLawtonUSA
  2. 2.Laboratoire de Mathématiques et ApplicationsPoitiers UniversityFuturoscope Chasseneuil CedexFrance

Personalised recommendations