Numerical Algorithms

, Volume 61, Issue 1, pp 57–81 | Cite as

A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function

  • Zhang Lipu
  • Bai Yanqin
  • Xu Yinghong
Original Paper


We propose a new full-Newton step infeasible interior-point algorithm for monotone linear complementarity problems based on a simple locally-kernel function. The algorithm uses the simple locally-kernel function to determine the search directions and define the neighborhood of central path. Two types of full-Newton steps are used, feasibility step and centering step. The algorithm starts from strictly feasible iterates of a perturbed problem, on its central path, and feasibility steps find strictly feasible iterates for the next perturbed problem. By using centering steps for the new perturbed problem, we obtain strictly feasible iterates close enough to the central path of the new perturbed problem. The procedure is repeated until an ϵ-approximate solution is found. We analyze the algorithm and obtain the complexity bound, which coincides with the best-known result for monotone linear complementarity problems.


Monotone linear complementarity problems Interior-point algorithm Complexity analysis 

Mathematics Subject Classifications (2010)

17C99 90C25 90C51 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem. Society for Industrial Mathematics (2009)Google Scholar
  2. 2.
    El Ghami, M.: New primal-dual interior-point methods based on kernel functions. Ph.D Thesis, Delft University of Technology (2005)Google Scholar
  3. 3.
    Kojima, M., Megiddo, N., Noma, T.: A unified approach to interior point algorithms for linear complementarity problems. In: Lecture Notes in Computer Science, Springer (1991)Google Scholar
  4. 4.
    Kojima, M., Megiddo, N., Noma, T.: Homotopy continuation methods for nonlinear complementarity problems. Math. Oper. Res. 16(4), 754–774 (1991)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kojima, M., Mizuno, S., Yoshise, A.: A polynomial-time algorithm for a class of linear complementarity problems. Math. Prog. 44(1), 1–26 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Mansouri, H., Zangiabadi, M., Pirhaji, M.: A full-Newton step o (n) infeasible-interior-point algorithm for linear complementarity problems. Nonlinear Anal.: Real World Appl. 12(1), 546–561 (2010)MathSciNetGoogle Scholar
  7. 7.
    Mehrotra, S., Sun, J.: An algorithm for convex quadratic programming that requires O(n^3.5L) arithmetic operations. Math. Oper. Res. 15(2), 342–363 (1990)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Mehrotra, S., Sun, J.: A method of analytic centers for quadratically constrained convex quadratic programs. SIAM J. Numer. Anal. 28(2), 529–544 (1991)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Mizuno, S., Todd, M., Ye, Y.: On adaptive-step primal-dual interior-point algorithms for linear programming. Math. Oper. Res. 18(4), 964–981 (1993)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Monteiro, R., Adler, I.: Interior path following primal-dual algorithms. Part II: convex quadratic programming. Math. Prog. 44(1), 43–66 (1989)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Potra, F.: An infeasible interior point method for linear complementarity problems over symmetric cones. In: AIP Conference Proceedings, vol. 1168, pp. 1403–1406 (2009)Google Scholar
  12. 12.
    Potra, F., Sheng, R.: A path following method for LCP withsuperlinearly convergent iteration sequence. Ann. Oper. Res. 81(0), 97–114 (1998)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Roos, C.: A full-Newton step o (n) infeasible interior-point algorithm for linear optimization. SIAM J. Optim. 16(4), 1110–1136 (2006)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wright, S.: An infeasible-interior-point algorithm for linear complementarity problems. Math. Program. 67(1), 29–51 (1994)MATHCrossRefGoogle Scholar
  15. 15.
    Yoshise, A.: Complementarity problems. In: Terlaky T. (ed.) Interior Point Methods of Mathematical Programming. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  16. 16.
    Zhou, G., Toh, K., Zhao, G.: Convergence analysis of an infeasible interior point algorithm based on a regularized central path for linear complementarity problems. Comput. Optim. Appl. 27(3), 269–283 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang A&F UniversityZhejiangChina
  2. 2.Department of MathematicsShanghai UniversityShanghaiChina
  3. 3.Department of MathematicsZhejiang Sci-Tech UniversityZhejiangChina

Personalised recommendations