Numerical Algorithms

, Volume 59, Issue 4, pp 561–569 | Cite as

A note on spectrum analysis of augmentation block Schur complement preconditioners

Original Paper


In this note, as a generalization of the preconditioner presented by Greif et al. (SIAM J Matrix Anal Appl 27:779–792, 2006), we consider a set of augmentation block Schur complement preconditioners for solving saddle point systems whose coefficient matrices have singular (1,1) blocks. The spectral properties of the preconditioned matrices are analyzed and an optimal preconditioner is derived.


Block preconditioners Saddle point systems Minimal polynomial Augmentation Nullity 

AMS 2000 Subject Classifications

65F10 65N20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Numer. Linear Algebra Appl. 15, 515–533 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Greif, C., Golub, G.H., Varah, J.M.: An algebraic analysis of a block diagonal preconditioner for saddle point systems. SIAM J. Matrix Anal. Appl. 27, 779–792 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)MATHGoogle Scholar
  4. 4.
    Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. (with applications). Academic Press, London (1985)Google Scholar
  5. 5.
    Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear SciencesFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations