Numerical Algorithms

, Volume 54, Issue 1, pp 141–167 | Cite as

Bessel, sine and cosine functions and extrapolation methods for computing molecular multi-center integrals

Original Paper


In this work, we present an extremely efficient approach for a fast numerical evaluation of highly oscillatory spherical Bessel integrals occurring in the analytic expressions of the so-called molecular multi-center integrals over exponential type functions. The approach is based on the Slevinsky-Safouhi formulae for higher derivatives applied to spherical Bessel functions and on extrapolation methods combined with practical properties of sine and cosine functions. Recurrence relations are used for computing the approximations of the spherical Bessel integrals, allowing for a control of accuracy and the stability of the algorithm. The computer algebra system Maple was used in our development, mainly to prove the applicability of the extrapolation methods. Among molecular multi-center integrals, the three-center nuclear attraction and four-center two-electron Coulomb and exchange integrals are undoubtedly the most difficult ones to evaluate rapidly to a high pre-determined accuracy. These integrals are required for both density functional and ab initio calculations. Already for small molecules, many millions of them have to be computed. As the molecular system gets larger, the computation of these integrals becomes one of the most laborious and time consuming steps in molecular electronic structure calculation. Improvement of the computational methods of molecular integrals would be indispensable to a further development in computational studies of large molecular systems. Convergence properties are analyzed to show that the approach presented in this work is a valuable contribution to the existing literature on molecular integral calculations as well as on spherical Bessel integral calculations.


The Slevinsky-Safouhi formulae Oscillatory integrals Extrapolation methods Numerical integration Molecular multi-center integrals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezinski, C.: Algorithmes d’Accélérations de la Convergence. Technip, Paris (1978)Google Scholar
  2. 2.
    Brezinski, C., Redivo-Zaglia, M.: Extrapolation Methods: Theory and Practice. North-Holland, Amsterdam (1991)MATHGoogle Scholar
  3. 3.
    Brezinski, C., Redivo-Zaglia, M.: Rational extrapolation for the PageRank vector. Math. Comp. 77, 1585–1598 (2008)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Brezinski, C., Redivo-Zaglia, M.: The PageRank vector: properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 28, 551–575 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Redivo-Zaglia, M., Brezinski, C., Serra-Capizzano, S.: Extrapolation methods for PageRank computations. C. R. Acad. Sci. Paris, Ser. I 36, 309–329 (2004)Google Scholar
  6. 6.
    Brezinski, C.: Extrapolation algorithms for filtering series of functions, and treating the Gibbs phenomenon. Numer. Algorithms 36, 309–329 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Brezinski, C., Redivo-Zaglia, M.: A review of vector convergence acceleration methods, with applications to linear algebra problems. Int. J. Quantum Chem. 109, 1631–1639 (2009)CrossRefGoogle Scholar
  8. 8.
    Weniger, E.J.: Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep. 10, 189–371 (1989)CrossRefGoogle Scholar
  9. 9.
    Weniger, E.J.: Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Comput. Phys. 10, 496–503 (1996)CrossRefGoogle Scholar
  10. 10.
    Weniger, E.J., Kirtman, B.: Extrapolation methods for improving the convergence of oligomer calculations to the infinite chain limit of quasi-one dimensional stereoregular polymers. In: Simos, T.E., Avdelas, G., Vigo-Aguiar, J. (eds.) (Gastherausgeber) Special issue “Numerical Methods in Physics, Chemistry and Engineering”. Computers and Mathematics with Applications, vol. 45, pp. 189–215 (2003)Google Scholar
  11. 11.
    Weniger, E.J.: A rational approximant for the digamma function. Numer. Algorithms 33, 499–507 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Weniger, E.J., Čížek, J., Vinette, F.: The summation of the ordinary and renormalized perturbation series for the ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations. J. Math. Phys. 34, 571–609 (1993)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Weniger, E.J.: A convergent renormalized strong coupling perturbation expansion for the ground state energy of the quartic, sextic, and octic anharmonic oscillator. Ann. Phys. (NY) 246, 133–165 (1996)MATHCrossRefGoogle Scholar
  14. 14.
    Weniger, E.J.: Construction of the strong coupling expansion for the ground state energy of the quartic, sextic and octic anharmonic oscillator via a renormalized strong coupling expansion. Phys. Rev. Lett. 77, 2859–2862 (1996)CrossRefGoogle Scholar
  15. 15.
    Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Levin, D., Sidi, A.: Two new classes of non-linear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comput. 9, 175–215 (1981)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sidi, A.: Extrapolation methods for oscillating infinite integrals. J. Inst. Math. Appl. 26, 1–20 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gray, H.L., Wang, S.: A new method for approximating improper integrals. SIAM J. Numer. Anal. 29, 271–283 (1992)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gautschi, W.: The numerical evaluation of a challenging integral. Numer. Algorithms, 1017–1398. doi: 10.1007/s11075-008-9157-z (2008)
  20. 20.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. A Study in High-Accuracy Numerical Computing. SIAM, Philadelphia (2004)MATHGoogle Scholar
  21. 21.
    Slevinsky, R.M., Safouhi, H.: Numerical treatment of a twisted tail using extrapolation methods. Numer. Algorithms 48, 301–316 (2008)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hellmann, H.: Einführung in die Quantenchemie. Deuticke, Leipzig (1937)Google Scholar
  23. 23.
    Sack, R.A.: Generalization of Laplace’s expansion to arbitrary powers and functions of the distance between two points. J. Math. Phys. 5, 245–251 (1964)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sack, R.A.: Three-dimensional addition theorem for arbitrary functions involving expansions in spherical harmonics. J. Math. Phys. 5, 252–259 (1964)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Sack, R.A.: Two-center expansion for the powers of the distance between two points. J. Math. Phys. 5, 260–268 (1964)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sack, R.A.: Expansions in spherical harmonics. IV. Integral form of the radial dependence. J. Math. Phys. 8, 1774–1784 (1967)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sack, R.A.: Generating functions for spherical harmonics. Part I: three-dimensional harmonics. SIAM J. Math. Anal. 5, 774–796 (1974)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Dalgarno, A.: Integrals occurring in problems of molecular structure. Math. Tables Other Aids Comput. 8, 203–212 (1954)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Harris, F.E., Michels, H.H.: The evaluation of molecular integrals for Slater-type orbitals. Adv. Chem. Phys. 13, 205–266 (1967)CrossRefGoogle Scholar
  30. 30.
    Huzinaga, S.: Molecular integrals. Prog. Theor. Phys., Suppl. 40, 52–77 (1967)CrossRefGoogle Scholar
  31. 31.
    Browne, J.C.: Molecular wave functions: calculation and use in atomic and molecular processes. Adv. At. Mol. Phys. 7, 47–95 (1971)CrossRefGoogle Scholar
  32. 32.
    Agmon, S.: Bounds on exponential decay of eigenfunctions of Schrödinger operators. In: Graffi, S. (ed.) Schrödinger Operators. Springer, Berlin (1985)Google Scholar
  33. 33.
    Kato, T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957)MATHCrossRefGoogle Scholar
  34. 34.
    Boys, S.F.: Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. Lond., A Math. Phys. Sci. 200, 542–554 (1950)MATHCrossRefGoogle Scholar
  35. 35.
    Boys, S.F.: Electronic wave functions. II. A calculation for the ground state of the Beryllium atom. Proc. R. Soc. Lond., A Math. Phys. Sci. 201, 125–137 (1950)MATHCrossRefGoogle Scholar
  36. 36.
    Slater, J.C.: Analytic atomic wave functions. Phys. Rev. 42, 33–43 (1932)MATHCrossRefGoogle Scholar
  37. 37.
    Kutzelnigg, W.: Present and futur trends in quantum chemical calculations. J. Mol. Struct., Theochem 50, 33–54 (1988)CrossRefGoogle Scholar
  38. 38.
    Weatherford, C.A., Jones, H.W.: ETO Multicenter Molecular Integrals. Reidel, Dordrecht (1982)Google Scholar
  39. 39.
    Ozdogan, T., Ruiz, M.B. (eds.): Recent Advances in Computational Chemistry. Molecular Integrals Over Slater Orbitals. Transworld Research Network, Kerala (2008)Google Scholar
  40. 40.
    Niehaus, T.A., López, R., Rico, J.F.: Efficient evaluation of the Fourier transform over products of Slater-type orbitals on different centers. J. Phys. A: Math. Theor. 41, 485205–485219 (2008)CrossRefGoogle Scholar
  41. 41.
    Rico, F.J., Fernández, J.J., Ema, I., López, R., Ramírez, G.: Master formulas for two- amd three-center one electron integrals involving cartesian GTO, STO, and BTO. Int. J. Quantum Chem. 78, 83–93 (1999)CrossRefGoogle Scholar
  42. 42.
    Rico, F.J., López, R., Aguado, A., Ema, I., Ramírez, G.: Reference program for molecular calculations with Slater-type orbitals. Int. J. Quantum Chem. 19, 1284–1293 (1998)Google Scholar
  43. 43.
    Rico, J.F., Fernández, J.J., Ema, I., López, R., Ramírez, G.: Four-center integrals for gaussian and exponential functions. Int. J. Quantum Chem. 81, 16–18 (2001)CrossRefGoogle Scholar
  44. 44.
    Fernández, J.J., López, R., Aguado, A., Ema, I., Ramírez, G.: SMILES Slater molecular integrals for large electronic systems: new program for molecular calculations with Slater type orbitals. Int. J. Quantum Chem. 81, 148–153 (2001)CrossRefGoogle Scholar
  45. 45.
    Barnett, M.P.: Molecular integrals over Slater orbitals. Chem. Phys. Lett. 166, 65–70 (1990)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Steinborn, E.O., Homeier, H.H.H., Ema, I., López, R. Ramírez, G.: Molecular calculations with B functions. Int. J. Quantum Chem. 76, 244–251 (2000)CrossRefGoogle Scholar
  47. 47.
    Shavitt, I.: The Gaussian function in calculation of statistical mechanics and quantum mechanics. In: Alder, B., Fernbach, S., Rotenberg, M. (eds.) Methods in Computational Physics, vol. 2. Quantum Mechanics. Academic, New York (1963)Google Scholar
  48. 48.
    Weniger, E.J.: Reduzierte Bessel-Funktionen als LCAO-Basissatz: Analytische und numerische Untersuchungen. Ph.D. thesis, Universität Regensburg (1982)Google Scholar
  49. 49.
    Steinborn, E.O., Filter, E.: Translations of fields represented by spherical-harmonics expansions for molecular calculations. III. Translations of reduced Bessel functions, Slater-type s-orbitals, and other functions. Theor. Chim. Acta 38, 273–281 (1975)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Filter,E., Steinborn, E.O.: Extremely compact formulas for molecular one-electron integrals and Coulomb integrals over Slater-type orbitals. Phys. Rev., A. 18, 1–11 (1978)CrossRefGoogle Scholar
  51. 51.
    Filter, E., Steinborn, E.O.: The three-dimensional convolution of reduced Bessel functions of physical interest. J. Math. Phys. 19, 79–84 (1978)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Weniger, E.J., Steinborn, E.O.: Numerical properties of the convolution theorems of B functions. Phys. Rev., A. 28, 2026–2041 (1983)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Weniger, E.J.: The spherical tensor gradient operator. Collect. Czechoslov. Chem. Commun. 70, 1125–1271 (2005)Google Scholar
  54. 54.
    Weniger, E.J., Steinborn, E.O.: The Fourier transforms of some exponential-type functions and their relevance to multicenter problems. J. Chem. Phys. 78, 6121–6132 (1983)CrossRefGoogle Scholar
  55. 55.
    Niukkanen, A.W.: Fourier transforms of atomic orbitals. I. Reduction to fourdimensional harmonics and quadratic transformations. Int. J. Quantum Chem. 25, 941–955 (1984)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Weniger, E.J.: Weakly convergent expansions of a plane wave and their use in Fourier integrals. J. Math. Phys. 26, 276–291 (1985)MATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Prosser, F.P., Blanchard, C.H.: On the evaluation of two-center integrals. J. Chem. Phys. 36, 1112–1112 (1962)CrossRefGoogle Scholar
  58. 58.
    Geller, M.: Two-center, nonintegral, Slater-orbital calculations: integral formulation and application to the Hydrogen molecule-ion. J. Chem. Phys. 36, 2424–2428 (1962)CrossRefGoogle Scholar
  59. 59.
    Trivedi, H.P., Steinborn, E.O.: Fourier transform of a two-center product of exponential-type orbitals. Application to one- and two-electron multicenter integrals. Phys. Rev., A. 27, 670–679 (1983)CrossRefGoogle Scholar
  60. 60.
    Grotendorst, J., Steinborn, E.O.: Numerical evaluation of molecular one- and two-electron multicenter integrals with exponential-type orbitals via the Fourier-transform method. Phys. Rev., A. 38, 3857–3876 (1988)CrossRefGoogle Scholar
  61. 61.
    Safouhi, H.: The properties of sine, spherical Bessel and reduced Bessel functions for improving convergence of semi-infinite very oscillatory integrals: the evaluation of three-center nuclear attraction integrals over B functions. J. Phys., A, Math. Gen. 34, 2801–2818 (2001)MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Berlu, L., Safouhi, H.: An extremely efficient and rapid algorithm for a numerical evaluation of three-center nuclear attraction integrals over Slater type functions. J. Phys., A, Math. Gen. 36, 11791–11805 (2003)MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Berlu, L., Safouhi, H.: A new algorithm for accurate and fast numerical evaluation of hybrid and three-center two-electron Coulomb integrals over Slater type functions. J. Phys., A, Math. Gen. 36, 11267–11283 (2003)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Slevinsky, R.M., Safouhi, H.: The S and G transformations for computing three-center nuclear attraction integrals. Int. J. Quantum Chem. 109, 1741–1747 (2009)CrossRefGoogle Scholar
  65. 65.
    Slevinsky, R.M., Safouhi, H.: New formulae for higher order derivatives and applications. J. Comput. App. Math. (2009). doi: 10.10116/ MATHMathSciNetGoogle Scholar
  66. 66.
    Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge (1935)Google Scholar
  67. 67.
    Gaunt, J.A.: The triplets of helium. Philos. Trans. R. Soc., A 228, 151–196 (1929)CrossRefGoogle Scholar
  68. 68.
    Homeier, H.H.H., Steinborn, E.O.: Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients. J. Mol. Struct., Theochem 368, 31–37 (1996)Google Scholar
  69. 69.
    Weniger, E.J., Steinborn, E.O.: Programs for the coupling of spherical harmonics. Comput. Phys. Commun. 25, 149–157 (1982)CrossRefGoogle Scholar
  70. 70.
    Xu, Y.-L.: Fast evaluation of Gaunt coefficients: recursive approach. J. Comput. Appl. Math. 85, 53–65 (1997)MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Levin, D.: Developement of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math. B3, 371–388 (1973)CrossRefGoogle Scholar
  72. 72.
    Wynn, P.: Upon a second confluent form the ϵ-algorithm. Proc. Glascow Math. Assoc. 5, 160–165 (1962)MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  74. 74.
    Sidi, A.: Some properties of a generalization of the Richardson process. J. Inst. Math. Appl. 24, 327–346 (1979)MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Sidi, A.: An algorithm for a special case of a generalization of the Richardson extrapolation process. Numer. Math. 38, 299–307 (1982)MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Sidi, A.: Computation of infinite integrals involving Bessel functions of arbitrary order by the \(\bar{D}\)-transformation. J. Comp. Appl. Math. 78, 125–130 (1997)MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Duret, S., Safouhi, H.: The W algorithm and the \(\bar{D}\) transformation for the numerical evaluation of three-center nuclear attraction integrals. Int. J. Quantum Chem. 107, 1060–1066 (2007)CrossRefGoogle Scholar
  78. 78.
    Berlu, L., Safouhi, H.: Multicenter two-electron Coulomb and exchange integrals over Slater functions evaluated using a generalized algorithm based on nonlinear transformations. J. Phys., A, Math. Gen. 37, 3393–3410 (2004)MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Safouhi, H.: Efficient and rapid numerical evaluation of the two-electron four-center Coulomb integrals using nonlinear transformations and practical properties of sine and Bessel functions. J. Comp. Phys. 176, 1–19 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Mathematical Section, Campus Saint-JeanUniversity of AlbertaEdmontonCanada

Personalised recommendations