Advertisement

Numerical Algorithms

, 52:385 | Cite as

A new rational approximation technique based on transformational high dimensional model representation

  • İrem Yaman
  • Metin Demiralp
Original Paper

Abstract

In this work, a new rational approximation scheme, based on the recently developed Transformational High Dimensional Model Representation (THDMR) approximation method is developed. As an initial step to the construction of a rational approximation for multivariate functions via THDMR, this paper focuses on the general theoretical background of the method and gives explicit formulae for the computation of such approximants. The performance of the technique is shown by several examples both in univariate and bivariate cases.

Keywords

High dimensional model representation Rational approximation Multivariate analysis 

PACS

02.30.Mv 02.50.Sk 

References

  1. 1.
    Ostberg, D.R., Perkins, F.W.: An introduction to linear analysis. Addison-Wesley, Reading (1966)MATHGoogle Scholar
  2. 2.
    Cuyt, A.: The epsilon-algorithm and multivariate Padé approximants. Numer. Math. 40, 39–46 (1982)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cuyt, A.A.M., Ogawa, S., Verdonk, B.: Model reduction of multidimensional linear shift-invariant recursive systems using Padé techniques. Multidimens. Syst. Signal Process. 3, 309–322 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. MMCE (Math. Model. Comput. Exper.) 1–4, 407 (1993)MathSciNetGoogle Scholar
  5. 5.
    Fuhrman, P.A.: A polynomial approach to linear algebra. Springer, New York (1996)Google Scholar
  6. 6.
    Rabitz, H., Alış, Ö.F.: General foundations of high dimensional model representations. J. Math. Chem. 25, 197–233 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cuyt, A.: How well can the concept of Padé approximant be generalized to the multivariate case. J. Comput. Appl. Math. 105, 25–50 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Alış, Ö.F., Rabitz, H.: Efficient implementation of high dimensional model representations. J. Math. Chem. 9, 127–142 (2001)Google Scholar
  9. 9.
    Li, G., Rosenthal, C., Rabitz, H.: High dimensional model representations. J. Phys. Chem. A 105, 7765–7777 (2001)CrossRefGoogle Scholar
  10. 10.
    Demiralp, M.: High dimensional model representation and its applications. In: Tools For Mathematical Modelling, vol. 9, pp. 146–159. Saint-Petersburg State Polytechnic University, Saint-Petersburg (2003)Google Scholar
  11. 11.
    Yaman, İ., Demiralp, M.: High dimensional model representation applications to exponential matrix evaluation. In: Tools For Mathematical Modelling, vol. 9, pp. 463–474. Saint-Petersburg State Polytechnic University, Saint-Petersburg (2003)Google Scholar
  12. 12.
    Yaman, İ., Demiralp, M.: High dimensional model representation approximation of an evolution operator with a first order partial differential operator argument. Appl. Numer. Anal. Comput. Math. 1, 280–289 (2004)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Li, G., Schoendorf, J., Ho, T.S., Rabitz, H.: Multicut-HDMR with an application to an ionospheric model. J. Comp. Chem. 25, 1149–1156 (2004)CrossRefGoogle Scholar
  14. 14.
    Cuyt, A.A.M., Lenin, R.B., Willems, G., Blondia, C., Rousseeuw, P.: Computing packet loss probabilities in multiplexer models using rational approximation. IEEE Trans. Comput. 52(5), 633–643 (2005)CrossRefGoogle Scholar
  15. 15.
    Cuyt, A.A.M., Golub, G., Milanfar, P., Verdonk, B.: Multidimensional integral inversion with applications in shape reconstraction. SIAM J. Sci. Comput. 27(3), 1058–1070 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Baker, G.E., Morris, G.: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  17. 17.
    Demiralp, M.: Transformational high dimensional model representation. In: ICCMSE-2006 (International Conference of Computational Methods in Sciences and Engineering) (2006)Google Scholar
  18. 18.
    Demiralp, M.: Weight parameters optimization to get maximum constancy in high dimensional model representation. In: WSEAS (The World Scientific and Engineering Academy and Society) Transaction on Mathematics, vol. 5, pp. 1177–1181 (2006)Google Scholar
  19. 19.
    Demiralp, M.: Illustrative implementations to show how logarithm based high dimensional model representation works for various function structures. In: WSEAS (The World Scientific and Engineering Academy and Society) Transaction on Computers, vol. 5, pp. 1333–1338 (2006)Google Scholar
  20. 20.
    Demiralp, M.: Plain and logarithmic high dimensional model representation and the effect on their types on univariance level. In: WSEAS (The World Scientific and Engineering Academy and Society) Transaction on Mathematics, vol. 5, pp. 582–588 (2006)Google Scholar
  21. 21.
    Tunga, M.A., Demiralp, M.: Hybrid high dimensional model representation (HHDMR) on the partitioned data. J. Comput. Appl. Math. 185, 107–132 (2006)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Li, G., Hu, J., Wang, S.W., Georgopoulos, P., Schoendorf, J., Rabitz, H.: Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. J. Phys. Chem. A 110, 2474–2485 (2006)CrossRefGoogle Scholar
  23. 23.
    Abouir, J., Cuyt, A.A.M.: Stable multi-dimensional model reduction and IIR filter design. Int. J. Comput. Sci. Math. 1, 16–27 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Computational Science and Engineering Program, Informatics InstituteIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations