Numerical Algorithms

, Volume 50, Issue 2, pp 145–154 | Cite as

Classification of sets satisfying the geometric characterization

Original Paper


The geometric characterization identifies the sets of nodes such that the Lagrange polynomials are products of factors of first degree. We offer a detailed classification of all known sets satisfying the geometric characterization in the plane. The defect, which takes into account the number of lines containing more nodes than the degree, plays a fundamental role in this classification.


Bivariate polynomial interpolation Geometric characterization 

Mathematics Subject Classifications (2000)

41A05 41A63 65D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Boor, C.: Multivariate polynomial interpolation: conjectures concerning GC-sets. Numer. Algorithms 45, 113–125 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Busch, J.R.: A note on Lagrange interpolation in R 2. Rev. Union Mat. Argent. 36, 33–38 (1990)MATHMathSciNetGoogle Scholar
  3. 3.
    Carnicer, J.M., García-Esnaola, M.: Lagrange interpolation on conics and cubics. Comput. Aided Geom. Des. 19, 313–326 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Carnicer, J.M., Gasca, M.: Planar configurations with simple Lagrange formulae. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in CAGD: Oslo 2000, pp. 55–62. Vanderbilt University Press, Nashville (2001)Google Scholar
  5. 5.
    Carnicer, J.M., Gasca, M.: A conjecture on multivariate polynomial interpolation. Rev. R. Acad. Cienc. Ser. A Mat. 95, 145–153 (2001)MATHMathSciNetGoogle Scholar
  6. 6.
    Carnicer, J.M., Gasca, M.: On Chung and Yao’s geometric characterization for bivariate polynomial interpolation. In: Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 2002, pp. 21–30. Nashboro, Brentwood (2003)Google Scholar
  7. 7.
    Carnicer, J.M., Gasca, M.: Classification of bivariate GC configurations for interpolation. Adv. Comput. Math. 20, 5–16 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Carnicer, J.M., Gasca, M.: Generation of lattices of points for bivariate interpolation. Numer. Algorithms 39, 69–79 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Carnicer, J.M., Gasca, M.: Interpolation on lattices generated by cubic pencils. Adv. Comput. Math. 24, 113–130 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Carnicer, J.M., Godés, C.: Geometric characterization and generalized principal lattices. J. Approx. Theory 143, 2–14 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Carnicer, J.M., Godés, C.: Geometric characterization of configurations with defect three. In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curves and Surfaces Fitting: Avignon 2006, pp. 61–70. Nashboro, Brentwood (2007)Google Scholar
  12. 12.
    Carnicer, J.M., Godés, C.: Generalized principal lattices and cubic pencils. Numer. Algorithms 44, 133–145 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chung, K.C., Yao, T.H.: On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal. 14, 735–743 (1977)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gasca, M., Maeztu, J.I.: On Lagrange and Hermite interpolation in R n. Numer. Math. 39, 1–14 (1982)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lee, S.L., Phillips, G.M.: Construction of lattices for Lagrange interpolation in projective space. Constr. Approx. 7, 283–297 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversity of ZaragozaZaragozaSpain
  2. 2.Departamento de Matemática AplicadaUniversity of ZaragozaHuescaSpain

Personalised recommendations