Skip to main content
Log in

Computing the complete CS decomposition

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

An algorithm for computing the complete CS decomposition of a partitioned unitary matrix is developed. Although the existence of the CS decomposition (CSD) has been recognized since 1977, prior algorithms compute only a reduced version. This reduced version, which might be called a 2-by-1 CSD, is equivalent to two simultaneous singular value decompositions. The algorithm presented in this article computes the complete 2-by-2 CSD, which requires the simultaneous diagonalization of all four blocks of a unitary matrix partitioned into a 2-by-2 block structure. The algorithm appears to be the only fully specified algorithm available. The computation occurs in two phases. In the first phase, the unitary matrix is reduced to bidiagonal block form, as described by Sutton and Edelman. In the second phase, the blocks are simultaneously diagonalized using techniques from bidiagonal SVD algorithms of Golub, Kahan, Reinsch, and Demmel. The algorithm has a number of desirable numerical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J.J., Du Croz, J., Hammarling, S., Greenbaum, A., McKenney, A., Sorensen, D.: LAPACK Users’ guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1999)

    Google Scholar 

  2. Bai, Z.: The CSD, GSVD, their applications and computations. Preprint Series 958. Institute for Mathematics and its Applications, University of Minnesota (1992, April)

  3. Bai, Z., Demmel, J.: Computing the generalized singular value decomposition. SIAM J. Sci. Comput. 14(6), 1464–1486 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Davis, C., Kahan, W.M.: Some new bounds on perturbation of subspaces. Bull. Am. Math. Soc. 75, 863–868 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davis, C., Kahan, W.M.: The rotation of eigenvectors by a perturbation, III. SIAM J. Numer. Anal. 7, 1–46 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Statist. Comput. 11(5), 873–912 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Edelman, A., Sutton, B.D.: The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems. Found. Comput. Math. 8(2), 259–285 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Ind. Appl. Math., Ser. B Numer. Anal. 2, 205–224 (1965)

    Article  MathSciNet  Google Scholar 

  9. Golub, G.H., Reinsch, C.: Handbook series linear algebra: Singular value decomposition and least squares solutions. Numer. Math. 14(5), 403–420 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  11. Hari, V.: Accelerating the SVD block-Jacobi method. Computing 75(1), 27–53 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jordan, C.: Essai sur la géométrie à n dimensions. Bull. Soc. Math. Fr. 3, 103–174 (1875)

    Google Scholar 

  13. Paige, C.C.: Computing the generalized singular value decomposition. SIAM J. Sci. Statist. Comput. 7(4), 1126–1146 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18(3), 398–405 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paige, C.C., Wei, M.: History and generality of the CS decomposition. Linear Algebra Appl. 208/209, 303–326 (1994)

    Article  MathSciNet  Google Scholar 

  16. Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19(4), 634–662 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stewart, G.W.: Computing the CS decomposition of a partitioned orthonormal matrix. Numer. Math. 40(3), 297–306 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sutton, B.D.: The stochastic operator approach to random matrix theory, Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, MA (2005)

  19. Van Loan, C.: Computing the CS and the generalized singular value decompositions. Numer. Math. 46(4), 479–491 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Watkins, D.S.: Some perspectives on the eigenvalue problem. SIAM Rev. 35(3), 430–471 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Sutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, B.D. Computing the complete CS decomposition. Numer Algor 50, 33–65 (2009). https://doi.org/10.1007/s11075-008-9215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9215-6

Keywords

Mathematics Subject Classifications (2000)

Navigation