Numerical Algorithms

, Volume 42, Issue 3–4, pp 345–361

# Interpolation algorithm of Leverrier–Faddev type for polynomial matrices

Article

## Abstract

We investigated an interpolation algorithm for computing outer inverses of a given polynomial matrix, based on the Leverrier–Faddeev method. This algorithm is a continuation of the finite algorithm for computing generalized inverses of a given polynomial matrix, introduced in [11]. Also, a method for estimating the degrees of polynomial matrices arising from the Leverrier–Faddeev algorithm is given as the improvement of the interpolation algorithm. Based on similar idea, we introduced methods for computing rank and index of polynomial matrix. All algorithms are implemented in the symbolic programming language MATHEMATICA , and tested on several different classes of test examples.

## Keywords

pseudoinverse interpolation MATHEMATICA Leverrier–Faddeev method, polynomial matrices

15A09 69Q40

## References

1. 1.
Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Theory and Applications, 2nd edn, Ouvrages de Mathmatiques de la SMC, 15. Springer, Berlin Heidelberg New York (2003)Google Scholar
2. 2.
Decell, H.P.: An application of the Cayley–Hamilton theorem to generalized matrix inversion. SIAM Rev. 7(4), 526–528 (1965)
3. 3.
Ji, J.: A finite algorithm for the Drazin inverse of a polynomial matrix. Appl. Math. Comput. 30, 243–251 (2002)
4. 4.
Ji, J.: Explicit expressions of the generalized inverses and condensed Cramer rules. Linear Algebra Appl. 404, 183–192 (2005)
5. 5.
Jones, J., Karampetakis, N.P., Pugh, A.C.: The computation and application of the generalized inverse vai Maple. J. Symb. Comput. 25, 99–124 (1998)
6. 6.
Karampetakis, N.P.: Computation of the generalized inverse of a polynomial matrix and applications. Linear Algebra Appl. 252, 35–60 (1997)
7. 7.
Karampetakis, N.P.: Generalized inverses of two-variable polynomial matrices and applications. Circuits Syst. Signal Process. 16, 439–453 (1997)
8. 8.
Karampetakis, N.P., Tzekis, P.: On the computation of the generalized inverse of a polynomial matrix. IMA J. Math. Control Inf. 18, 83–97 (2001)
9. 9.
Li, X., Wei, Y.: A note on computing the generalized inverse A T,S (2) of a matrix A. Int. J. Math. Math. Sci. 31, 497–507 (2002)
10. 10.
Stanimirovic, P.S., Tasić, M.B.: Drazin inverse of one-variable polynomial matrices. Filomat, Niš, 15, 71–78 (2001)Google Scholar
11. 11.
Stanimirović, P.S.: A finite algorithm for generalized inverses of polynomial and rational matrices. Appl. Math. Comput. 144, 199–214 (2003)
12. 12.
Press, W.H., Teukolsky, S.A., Wetterling, W.T., Flannery, B.P.: Numerical Receipts in C. Cambridge University Press, UK (1992)Google Scholar
13. 13.
Schuster, A., Hippe, P.: Inversion of polynomial matrices by interpolation. IEEE Trans. Automat. Contr. 37(3), 363–365 (1992)
14. 14.
Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations Science, Beijing, China (2004)Google Scholar
15. 15.
Bu, F., Wei, Y.: The algorithm for computing the Drazin inverse of two-variable polynomial matrices. Appl. Math. Comput. 147, 805–836 (2004)
16. 16.
Wei, Y.: A characterization and representation of the generalized inverse A T,S (2) and its applications. Linear Algebra Appl. 280, 87–96 (1998)
17. 17.
Wei, Y., Djordjević, D.S.: On integral representation of the generalized inverse A T,S (2). Appl. Math. Comput. 142, 189–194 (2003)
18. 18.
Wei, Y., Wu, H.: The representation and approximation for the generalized inverse A T,S (2). Appl. Math. Comput. 135, 263–276 (2003)
19. 19.
Wei, Y., Zhang, N.: A note on the representation and approximation of the outer inverse A T,S (2) of a matrix A. Appl. Math. Comput. 147(3), 837–841 (2004)
20. 20.
Wolfram, S.: The Mathematica Book, 4th edn., Cambridge University Press, UK (1999)
21. 21.
Zielke, G.: Report on test matrices for generalized inverses. Computing 36, 105–162 (1986)