Skip to main content
Log in

A higher order family for the simultaneous inclusion of multiple zeros of polynomials

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Starting from a suitable fixed point relation, a new family of iterative methods for the simultaneous inclusion of multiple complex zeros in circular complex arithmetic is constructed. The order of convergence of the basic family is four. Using Newton’s and Halley’s corrections, we obtain families with improved convergence. Faster convergence of accelerated methods is attained with only few additional numerical operations, which provides a high computational efficiency of these methods. Convergence analysis of the presented methods and numerical results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Herzberger, Introduction to Interval Computation (Academic Press, New York, 1983).

    Google Scholar 

  2. D.A. Bini and G. Fiorentino, Design, analysis and implementation of a multiprecision polynomial rootfinder, Numer. Algorithms 23 (2000) 127–173.

    Google Scholar 

  3. C. Carstensen and M.S. Petković, An improvement of Gargantini’s simultaneous inclusion method for polynomial roots by Schroeder’s correction, Appl. Numer. Math. 13 (1994) 453–468.

    Google Scholar 

  4. T.J. Dekker, Newton–Laguerre iteration, in: Programmation en Mathématiques Numériques, Colloquium International du CNRS (Besançon, 1968) pp. 189–200.

  5. P. Gargantini, Parallel algorithms for the determination of polynomial zeros, in: Proc. of III Manitoba Conf. on Numer. Math., Winnipeg 1973, eds. R. Thomas and H.C. Williams (Utilitas Mathematica Publ., Winnipeg, 1974) pp. 195–211.

    Google Scholar 

  6. I. Gargantini, Parallel Laguerre iterations: The complex case, Numer. Math. 26 (1976) 317–323.

    Google Scholar 

  7. I. Gargantini, Further application of circular arithmetic: Schröder-like algorithms with error bound for finding zeros of polynomials, SIAM J. Numer. Anal. 15 (1978) 497–510.

    Google Scholar 

  8. P. Henrici, Applied and Computational Complex Analysis, Vol. I (Wiley, New York, 1974).

    Google Scholar 

  9. Ð.D. Herceg, Computer implementation and interpretation of iterative methods for solving equations, Master theses, University of Novi Sad, Novi Sad (1997).

  10. J. Herzberger and L. Metzner, On the Q-order and R-order of convergence for coupled sequences arising in iterative numerical processes, in: Numerical Methods and Error Bounds, eds. G. Alefeld and J. Herzberger, Mathematical Research, Vol. 89 (Akademie Verlag, Berlin, 1996) pp. 120–131.

    Google Scholar 

  11. V. Hribernig and H.J. Stetter, Detection and validation of clusters of polynomial zeros, J. Symbolic Comput. 24 (1997) 667–681.

    Google Scholar 

  12. I.O. Iokimidis and E.G. Anastasselou, On the simultaneous determination of zeros of analytic or sectionally analytic functions, Computing 36 (1986) 239–246.

    Google Scholar 

  13. R.F. King, Improving the Van de Vel root-finding method, Computing 30 (1983) 373–378.

    Google Scholar 

  14. P. Kravanja, On computing zeros of analytic functions and related problems in structured numerical linear algebra, Ph.D. thesis, Katholieke Universiteit Leuven, Lueven (1999).

  15. P. Kravanja, A modification of Newton’s method for analytic mappings having multiple zeros, Computing 62 (1999) 129–145.

    Google Scholar 

  16. P. Kravanja, T. Sakurai and M. van Barel, On locating clusters of zeros of analytic functions, BIT 39 (1999) 646–682.

    Google Scholar 

  17. M. Marden, Geometry of Polynomials, AMS Mathematical Surveys, Vol. 3 (Amer. Math. Soc., Providence, RI, 1996).

    Google Scholar 

  18. A. Neumaier, An existence test for root clusters and multiple roots, Z. Angew. Math. Mech. 68 (1988) 256–257.

    Google Scholar 

  19. A. Neumaier, Enclosing clusters of zeros of polynomials, J. Comput. Appl. Math. 156 (2003) 389–401.

    Google Scholar 

  20. X.M. Niu and T. Sakurai, A method for finding the zeros of polynomials using a companion matrix, Japan J. Industr. Appl. Math. 20 (2003) 239–256.

    Google Scholar 

  21. X.M. Niu, T. Sakurai and H. Sugiura, On bounding clusters of zeros of analytic functions, Preprint (2003).

  22. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    Google Scholar 

  23. V.Y. Pan, Optimal and nearly optimal algorithms for approximating polynomial zeros, Comput. Math. Appl. 31 (1996) 97–138.

    Google Scholar 

  24. M.S. Petković, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  25. M.S. Petković, On Halley-like algorithms for the simultaneous approximation of polynomial complex zeros, SIAM J. Numer. Math. 26 (1989) 740–763.

    Google Scholar 

  26. M.S. Petković, Halley-like method with corrections for the inclusion of polynomial zeros, Computing 62 (1999) 69–88.

    Google Scholar 

  27. M.S. Petković and C. Carstensen, On some improved inclusion methods for polynomial roots with Weierstrass’ correction, Comput. Math. Appl. 25 (1993) 59–67.

    Google Scholar 

  28. M.S. Petković, C. Carstensen and M. Trajković, Weierstrass’ formula and zero-finding methods, Numer. Math. 69 (1995) 353–372.

    Google Scholar 

  29. M.S. Petković and D. Milošević, Ostrowski-like method with corrections for the inclusion of polynomial zeros, Reliable Computing 10 (2004) 437–467.

    Google Scholar 

  30. M.S. Petković and L.D. Petković, On a computational test for the existence of polynomial zero, Comput. Math. Appl. 17 (1989) 1109–1114.

    Google Scholar 

  31. M.S. Petković, T. Sakurai and L. Rančić, Family of simultaneous methods of Hansen–Patrick’s type, Appl. Numer. Math. 50 (2004) 489–510.

    Google Scholar 

  32. S.M. Rump, Ten methods to bound multiple roots of polynomials, J. Comput. Appl. Math. 156 (2003) 403–432.

    Google Scholar 

  33. J.W. Schmidt, On the R-order of coupled sequences, Computing 26 (1981) 333–342.

    Google Scholar 

  34. X. Wang and S. Zheng, A family of parallel and interval iterations for finding simultaneously all roots of a polynomial with rapid convergence (I), J. Comput. Math. 4 (1984) 70–76.

    Google Scholar 

  35. J.C. Yakoubsohn, Finding a cluster of zeros of univariate polynomials, J. Complexity 16 (2000) 603–638.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag S. Petković.

Additional information

Communicated by C. Brezinski

AMS subject classification

65H05, 65G20, 30C15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petković, M.S., Milošević, D.M. A higher order family for the simultaneous inclusion of multiple zeros of polynomials. Numer Algor 39, 415–435 (2005). https://doi.org/10.1007/s11075-004-8199-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-004-8199-0

Keywords

Navigation