Skip to main content
Log in

Bifurcations of rotating structures in a parabolic functional differential equation

  • Published:
Nonlinear Oscillations

Abstract

We investigate the Andronov-Hopf bifurcation of the birth of a periodic solution from a space-homogeneous stationary solution of the Neumann problem on a disk for a parabolic equation with a transformation of space variables in the case where this transformation is the composition of a rotation by a constant angle and a radial contraction. Under general assumptions, we prove a theorem on the existence of a rotating structure, deduce conditions for its orbital stability, and construct its asymptotic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Generation of structures in optical systems with two-dimensional feedback: on the way to creation of nonlinear optical analogs of neuron nets,” in: New Principles of Optical Information Processing [in Russian], Nauka, Moscow (1990), pp. 263–325.

    Google Scholar 

  2. A. V. Razgulin, “Rotation waves in an optical system with two-dimensional feedback,” Mat. Model., 5, No. 4, 106–119 (1993).

    MathSciNet  Google Scholar 

  3. A.V. Razgulin, “Rotational multi-petal waves in optical system with 2-D feedback,” in: R. Roy (editor), Chaos in Optics (1993), pp. 342–351.

  4. E. P. Belan, “Rotating waves in a parabolic problem with transformed argument,” Dinam. Sist., Issue 16, 160–167 (2000).

    Google Scholar 

  5. A. L. Skubachevskii, “Bifurcation of periodic solution for nonlinear parabolic functional differential equations arising in optoelectronics,” Nonlin. Anal. Theor. Meth. Appl., 12, No. 2, 261–278 (1998).

    Article  MathSciNet  Google Scholar 

  6. A. L. Skubachevskii, “On the Hopf bifurcation for a quasilinear parabolic functional differential equation,” Differents. Uravn., 34, No. 10, 1394–1401 (1998).

    MathSciNet  Google Scholar 

  7. E. P. Belan, “On bifurcation of periodic solutions in a parabolic functional differential equation,” Uchen. Zap. Tavrich. Nats. Univ., Ser. Mat. Mekh. Inform. Kiber., No. 2, 11–23 (2002).

  8. E. P. Belan and O. B. Lykova, “Rotating structures in a parabolic functional differential equation,” Differents. Uravn., 40, No. 10, 1348–1357 (2004).

    MathSciNet  Google Scholar 

  9. N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  10. Yu. A. Mitropol’skii and O. B. Lykova, Integral Manifolds in Nonlinear Mechanics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  11. Yu. A. Mitropol’skii and B. I. Moseenkov, Asymptotic Solutions of Partial Differential Equations [in Russian], Vyshcha Shkola, Kiev (1976).

    Google Scholar 

  12. D. Ruelle, “Bifurcations in the presence of a symmetry group,” Arch. Ration. Mech. Anal., 51, No. 2, 136–152 (1973).

    Article  MathSciNet  Google Scholar 

  13. J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer, New York (1976).

    MATH  Google Scholar 

  14. V. I. Arnol’d, V. S. Afraimovich, Yu. S. Il’yashenko, and L. P. Shil’nikov, “Theory of bifurcations,” in: VINITI Series in Contemporary Problems in Mathematics, Fundamental Trends [in Russian], Vol. 5, VINITI, Moscow (1985), pp. 5–218.

    Google Scholar 

  15. Y. A. Kuznetzov, Elements of Applied Bifurcation Theory, Springer, New York (1998).

    Google Scholar 

  16. E. P. Belan, “On bifurcation of running waves in a singularly perturbed parabolic problem with transformed argument,” Dinam. Sist., Issue 17, 179–184 (2001).

    Google Scholar 

  17. J. Hale, Theory of Functional Differential Equations, Springer, New York (1977).

    MATH  Google Scholar 

  18. A. B. Vasil’eva, S. A. Kashchenko, Yu. S. Kolesov, and N. Kh. Rozov, “Bifurcation of self-oscillations of nonlinear parabolic equations with small diffusion,” Mat. Sb., 130, Issue 4, 488–499 (1986).

    MathSciNet  Google Scholar 

  19. Yu. S. Kolesov and N. Kh. Rozov, Invariant Tori of Nonlinear Wave Equations [in Russian], Fizmatlit, Moscow (2004).

    Google Scholar 

  20. E. F. Mishchenko, V. A. Sadovnichii, A. Yu. Kolesov, and N. Kh. Rozov, Autowave Processes in Nonlinear Media with Diffusion [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  21. E. P. Belan, “On dynamics of running waves in a parabolic equation with shift transformation of a space variable,” Zh. Mat. Fiz. Anal. Geometr., 1, No. 1, 3–34 (2005).

    MathSciNet  Google Scholar 

  22. B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, Theory and Application of Hopf Bifurcation, Cambridge University, Cambridge (1981).

    Google Scholar 

  23. Yu. S. Kolesov and N. Kh. Rozov, “Optical buffering and mechanisms of its appearance,” Teor. Mat. Fiz., 140, No. 1, 14–28 (2004).

    MathSciNet  Google Scholar 

  24. E. P. Belan, “On the interaction of running waves in a parabolic functional differential equation,” Differents. Uravn., 40, No. 5, 645–654 (2004).

    MathSciNet  Google Scholar 

  25. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin (1981).

    MATH  Google Scholar 

  26. V. A. Pliss, “Reduction principle in the theory of stability of motion,” Izv. Akad. Nauk SSSR, Ser. Mat., 28, No. 6, 1297–1324 (1964).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Neliniini Kolyvannya, Vol. 9, No. 2, pp. 155–169, April–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belan, E.P., Lykova, O.B. Bifurcations of rotating structures in a parabolic functional differential equation. Nonlinear Oscill 9, 152–165 (2006). https://doi.org/10.1007/s11072-006-0034-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11072-006-0034-1

Keywords

Navigation