Advertisement

Nonlinear Oscillations

, Volume 9, Issue 1, pp 115–124 | Cite as

An analog of the Saint-Venant principle and the uniqueness of a solution of the first boundary-value problem for a third-order equation of combined type in unbounded domains

  • A. R. Khashimov
Article
  • 21 Downloads

Abstract

We consider the first boundary-value problem for a third-order equation of combined type. Using the Saint-Venant principle, we study the uniqueness class for solutions of the problem in an unbounded domain.

Keywords

Generalize Solution Differentiable Function Flavin Uniqueness Theorem Unbounded Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Saint Venant and J. C. Barre, “De la torsion des prismes,” Mem. Divers Savants Acad. Sci. Paris, 14, 233–560 (1855).Google Scholar
  2. 2.
    M. E. Gurtin, “The linear theory of elasticity,” in: Handbuch der Physik, Vol. VIa/2, Springer, Berlin (1972).Google Scholar
  3. 3.
    J. K. Knowles, “On Saint Venant’s principle in the two-dimensional linear theory of elasticity,” Arch. Ration. Mech. Anal., 8, No. 1, 1–22 (1966).MathSciNetGoogle Scholar
  4. 4.
    J. M. Flavin, “On Knowles version of Saint Venant’s principle in two-dimensional elastostatics,” Arch. Ration. Mech. Anal., 53, No. 4, 366–375 (1974).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    O. A. Oleinik and G. A. Iosif’yan, “On the Saint-Venant principle in the plane elasticity theory, ” Dokl. Akad. Nauk SSSR, 279, No. 3, 530–533 (1978).Google Scholar
  6. 6.
    O. A. Oleinik and G. A. Iosif’yan, “An analog of the Saint-Venant principle and the uniqueness of solutions of boundary-value problems for parabolic second-order equations in unbounded domains,” Usp. Mat. Nauk, 31, Issue 6, 142–165 (1976).MathSciNetGoogle Scholar
  7. 7.
    A. E. Shishkov, Qualitative Properties of Generalized Solutions of Quasilinear Divergent Elliptic and Parabolic Equations [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  8. 8.
    A. I. Kozhanov, Boundary-Value Problems for Equations of Mathematical Physics of Odd Order [in Russian], Novosibirsk University, Novosibirsk (1990).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. R. Khashimov
    • 1
  1. 1.Institute of MathematicsUzbekistan Academy of SciencesTashkentUzbekistan

Personalised recommendations