Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis


This work investigates the dynamics of a microbeam-based MEMS device in the neighborhood of a 2:1 internal resonance between the third and fifth vibration modes. The saturation of the third mode and the concurrent activation of the fifth are observed. The main features are analyzed extensively, both experimentally and theoretically. We experimentally observe that the complexity induced by the 2:1 internal resonance covers a wide driving frequency range. Constantly comparing with the experimental data, the response is examined from a global perspective, by analyzing the attractor-basins scenario. This analysis is conducted both in the third-mode and in fifth-mode planes. We show several metamorphoses occurring as proceeding from the principal resonance to the 2:1 internal resonance, up to the final disappearance of the resonant and non-resonant attractors. The shape and wideness of all the basins are examined. Although they are progressively eroded, an appreciable region is detected where the compact cores of the attractors involved in the 2:1 internal resonance remain substantial, which allows effectively operating them under realistic conditions. The dynamical integrity of each resonant branch is discussed, especially as approaching the bifurcation points where the system becomes more vulnerable to the dynamic pull-in instability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Google Scholar 

  2. 2.

    Ruzziconi, L., Lenci, S., Younis, M.I.: An imperfect microbeam under an axial load and electric excitation: nonlinear phenomena and dynamical integrity. Int. J. Bifurc. Chaos 23(2), 1350026 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Ramini, A., Hennawi, Q., Younis, M.I.: Theoretical and experimental investigation of the nonlinear behavior of an electrostatically actuated in-plane MEMS arch. J. Microelectromech. Syst. 25(3), 570–578 (2016)

    Article  Google Scholar 

  4. 4.

    Medina, L., Gilat, R., Krylov, S.: Dynamic release condition in latched curved micro beams. Commun. Nonlinear. Sci. Numer. Simul. 73, 291–306 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Kambali, P.N., Torres, F., Barniol, N., Gottlieb, O.: Nonlinear multi-element interactions in an elastically coupled microcantilever array subject to electrodynamic excitation. Nonlinear Dyn. 98, 3067–3094 (2019)

    Article  Google Scholar 

  6. 6.

    Bassinello, D.G., Tusset, A.M., Rocha, R.T., Balthazar, J.M.: Dynamical analysis and control of a chaotic microelectromechanical resonator model. Shock Vib. 2018, 4641629 (2018)

    Google Scholar 

  7. 7.

    Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Miller, J.K., Chiu, G.T.C., Rhoads, J.F.: Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98(15), 153510 (2011)

    Article  Google Scholar 

  8. 8.

    Ouakad, H.M., Najar, F.: Nonlinear dynamics of MEMS arches assuming out-of-plane actuation arrangement. J. Vib. Acoust. 141(4), 041010 (2019)

    Article  Google Scholar 

  9. 9.

    Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Electrothermal frequency modulated resonator for mechanical memory. J. Microelectromech. Syst. 25(5), 877–883 (2016)

    Article  Google Scholar 

  10. 10.

    Samanta, C., Arora, N., Naik, A.K.: Tuning of geometric nonlinearity in ultrathin nanoelectromechanical systems. Appl. Phys. Lett. 113, 113101 (2018)

    Article  Google Scholar 

  11. 11.

    Kacem, N., Baguet, S., Duraffourg, L., Jourdan, G., Dufour, R., Hentz, S.: Overcoming limitations of nanomechanical resonators with simultaneous resonances. Appl. Phys. Lett. 107(7), 073105 (2015)

    Article  Google Scholar 

  12. 12.

    Jaber, N., Ilyas, S., Shekhah, O., Eddaoudi, M., Younis, M.I.: Resonant gas sensor and switch operating in air with metal–organic frameworks coating. J. Microelectromech. Syst. 27(2), 156–163 (2018)

    Article  Google Scholar 

  13. 13.

    Hajjaj, A.Z., Jaber, N., Ilyas, S., Alfosail, F.K., Younis, M.I.: Linear and nonlinear dynamics of micro and nano-resonators: review of recent advances. Int. J. Non-Linear Mech. 119, 103328 (2020)

    Article  Google Scholar 

  14. 14.

    Asadi, K., Yu, J., Cho, H.: Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos. Trans. R. Soc. A 376(2127), 20170141 (2018)

    Article  Google Scholar 

  15. 15.

    Hajjaj, A.Z., Jaber, N., Hafiz, M.A.A., Ilyas, S., Younis, M.I.: Multiple internal resonances in MEMS arch resonators. Phys. Lett. A 382(47), 3393–3398 (2018)

    Article  Google Scholar 

  16. 16.

    Hacker, E., Gottlieb, O.: Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in magnetic resonance force microscopy. Int. J. Non-Linear Mech. 94, 174–199 (2017)

    Article  Google Scholar 

  17. 17.

    Yang, W., Towfighian, S.: Internal resonance and low frequency vibration energy harvesting. Smart Mater. Struct. 26(9), 095008 (2017)

    Article  Google Scholar 

  18. 18.

    Kirkendall, C.R., Howard, D.J., Kwon, J.W.: Internal resonance in quartz crystal resonator and mass detection in nonlinear regime. Appl. Phys. Lett. 103(22), 223502 (2013)

    Article  Google Scholar 

  19. 19.

    Sarrafan, A., Azimi, S., Golnaraghi, F., Bahreyni, B.: A nonlinear rate microsensor utilising internal resonance. Sci. Rep. 9(1), 8648 (2019)

    Article  Google Scholar 

  20. 20.

    Vyas, A., Peroulis, D., Bajaj, A.K.: Dynamics of a nonlinear microresonator based on resonantly interacting flexural–torsional modes. Nonlinear Dyn. 54(1–2), 31–52 (2008)

    MATH  Article  Google Scholar 

  21. 21.

    Potekin, R., Dharmasena, S., Keum, H., Jiang, X., Lee, J., Kim, S., Bergman, L.A., Vakakis, A.F., Cho, H.: Multi-frequency atomic force microscopy based on enhanced internal resonance of an inner-paddled cantilever. Sens. Actuator A Phys. 273, 206–220 (2018)

    Article  Google Scholar 

  22. 22.

    Alfosail, F.K., Hajjaj, A.Z., Younis, M.I.: Theoretical and experimental investigation of two-to-one internal resonance in MEMS arch resonators. J. Comput. Nonlinear Dyn. 14(1), 011001 (2019)

    Article  Google Scholar 

  23. 23.

    Daqaq, M.F., Abdel-Rahman, E.M., Nayfeh, A.H.: Two-to-one internal resonance in microscanners. Nonlinear Dyn. 57, 231 (2009)

    MATH  Article  Google Scholar 

  24. 24.

    Nathamgari, S.S.P., Dong, S., Medina, L., Moldovan, N., Rosenmann, D., Divan, R., Lopez, D., Lauhon, L.J., Espinosa, H.D.: Nonlinear mode coupling and one-to-one internal resonances in a monolayer WS2 nanoresonator. Nano Lett. 19(6), 4052–4059 (2019)

    Article  Google Scholar 

  25. 25.

    Ruzziconi, L., Jaber, N., Kosuru, L., Bellaredj, M.L., Younis, M.I.: Two-to-one internal resonance in the higher-order modes of a MEMS beam: experimental investigation and theoretical analysis via local stability theory. Int. J. Non-Linear Mech. 129, 103664 (2021)

    Article  Google Scholar 

  26. 26.

    Ruzziconi, L., Lenci, S., Younis, M.I.: Interpreting and predicting experimental responses of micro-and nano-devices via dynamical integrity. In: Lenci, S., Rega, G. (eds.) Global Nonlinear Dynamics for Engineering Design and System Safety, pp. 113–166. Springer, Cham (2019)

    Google Scholar 

  27. 27.

    Alneamy, A.M., Khater, M.E., Abdel-Aziz, A.K., Heppler, G.R., Abdel-Rahman, E.M.: Electrostatic arch micro-tweezers. Int. J. Non-Linear Mech. 118, 103298 (2020)

    Article  Google Scholar 

  28. 28.

    Nguyen, V.N., Baguet, S., Lamarque, C.-H., Dufour, R.: Bifurcation-based micro-/nanoelectromechanical mass detection. Nonlinear Dyn. 79(1), 647–662 (2015)

    Article  Google Scholar 

  29. 29.

    Alcheikh, N., Hajjaj, A.Z., Younis, M.I.: Highly sensitive and wide-range resonant pressure sensor based on the veering phenomenon. Sens. Actuator A Phys. 300, 111652 (2019)

    Article  Google Scholar 

  30. 30.

    Westra, H., Poot, M., Van Der Zant, H., Venstra, W.: Nonlinear modal interactions in clamped-clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010)

    Article  Google Scholar 

  31. 31.

    Venstra, W.J., Capener, M.J., Elliott, S.R.: Nanomechanical gas sensing with nonlinear resonant cantilevers. Nanotechnology 25, 425501 (2014)

    Article  Google Scholar 

  32. 32.

    Kozinsky, I., Postma, H.W.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99(20), 207201 (2007)

    Article  Google Scholar 

  33. 33.

    Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16(2), 390 (2006)

    Article  Google Scholar 

  34. 34.

    Settimi, V., Rega, G.: Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. Int. J. Bifurc. Chaos 26(07), 1630018 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Ruzziconi, L., Younis, M.I., Lenci, S.: An electrically actuated imperfect microbeam: dynamical integrity for interpreting and predicting the device response. Meccanica 48(7), 1761–1775 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Ruzziconi, L., Lenci, S., Younis, M.I.: Dynamical integrity for interpreting experimental data and ensuring safety in electrostatic MEMS. In: Wiercigroch, M., Rega, G. (eds.) IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, pp. 249–261. Springer, Dordrecht (2013)

  37. 37.

    Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos. Wiley, New York (2002)

    Google Scholar 

  38. 38.

    Jaber, N., Ramini, A., Carreno, A.A.A., Younis, M.I.: Higher-order modes excitation of electrostatically actuated clamped–clamped microbeams: experimental and analytical investigation. J. Micromech. Microeng. 26, 025008 (2016)

    Article  Google Scholar 

  39. 39.

    Ewins, D.J.: Modal Testing: Theory, Practice and Application. Wiley, New York (2009)

    Google Scholar 

  40. 40.

    Rhoads, J., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001 (2010)

    Article  Google Scholar 

  41. 41.

    Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52, 2583–2602 (2017)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Lan, C., Qin, W., Deng, W.: Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam. Appl. Phys. Lett. 107, 093902 (2015)

    Article  Google Scholar 

  43. 43.

    Hacker, E., Gottlieb, O.: Internal resonance based sensing in noncontact atomic force microscopy. Appl. Phys. Lett. 101(5), 053106 (2012)

    Article  Google Scholar 

  44. 44.

    Vyas, A., Peroulis, D., Bajaj, A.K.: A microresonator design based on nonlinear 1:2 internal resonance in flexural structural modes. J. Microelectromech. Syst. 18, 744–762 (2009)

    Article  Google Scholar 

  45. 45.

    Jeong, B., Pettit, C., Dharmasena, S., Keum, H., Lee, J., Kim, J., Kim, S., McFarland, D.M., Bergman, L.A., Vakakis, A.F., Cho, H.: Utilizing intentional internal resonance to achieve multi-harmonic atomic force microscopy. Nanotechnology 27(12), 125501 (2016)

    Article  Google Scholar 

  46. 46.

    Noori, N., Sarrafan, A., Golnaraghi, F., Bahreyni, B.: Utilization of 2:1 internal resonance in microsystems. Micromachines 9(9), 448 (2018)

    Article  Google Scholar 

  47. 47.

    Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1979)

    Google Scholar 

  48. 48.

    Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J. Microelectromech. Syst. 19(4), 794–806 (2010)

    Article  Google Scholar 

  49. 49.

    Ruzziconi, L., Ramini, A.H., Younis, M.I., Lenci, S.: Theoretical prediction of experimental jump and pull-in dynamics in a MEMS sensor. Sensors 14(9), 17089–17111 (2014)

    Article  Google Scholar 

  50. 50.

    Hsu, C.S.: Cell-to-Cell Mapping. A Method of Global Analysis for Nonlinear Systems. Springer, Berlin (1987)

    Google Scholar 

  51. 51.

    Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Rega, G., Lenci, S.: Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Anal. Theory Methods Appl. 63, 902–914 (2005)

    MATH  Article  Google Scholar 

  53. 53.

    Rega, G., Lenci, S.: A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Appl. Mech. Rev. 67, 050802 (2015)

    Article  Google Scholar 

  54. 54.

    Thompson, J.M.T.: Dynamical integrity: three decades of progress from macro to nano mechanics. In: Lenci, S., Rega, G. (eds.) Global Nonlinear Dynamics for Engineering Design and System Safety, pp. 1–26. Springer, Cham (2019)

    Google Scholar 

  55. 55.

    Rega, G., Lenci, S., Ruzziconi, L.: Dynamical integrity: a novel paradigm for evaluating load carrying capacity. In: Lenci, S., Rega, G. (eds.) Global Nonlinear Dynamics for Engineering Design and System Safety, pp. 27–112. Springer, Cham (2019)

    Google Scholar 

  56. 56.

    Settimi, V., Rega, G.: Local versus global dynamics and control of an AFM model in a safety perspective. In: Lenci, S., Rega, G. (eds.) Global Nonlinear Dynamics for Engineering Design and System Safety, pp. 229–286. Springer, Cham (2019)

    Google Scholar 

  57. 57.

    Soliman, M.S., Thompson, J.M.T.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135, 453–475 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Daeichin, M., Ozdogan, M., Towfighian, S., Miles, R.: Dynamic response of a tunable MEMS accelerometer based on repulsive force. Sens. Actuator A Phys. 289, 34–43 (2018)

    Article  Google Scholar 

  59. 59.

    Lyu, M., Zhao, J., Kacem, N., Liu, P., Tang, B., Xiong, Z., Wang, H., Huang, Y.: Exploiting nonlinearity to enhance the sensitivity of mode-localized mass sensor based on electrostatically coupled MEMS resonators. Int. J. Non-Linear Mech. 121, 103455 (2020)

    Article  Google Scholar 

  60. 60.

    HaLevy, O., Krakover, N., Krylov, S.: Feasibility study of a resonant accelerometer with bistable electrostatically actuated cantilever as a sensing element. Int. J. Non-Linear Mech. 118, 103255 (2020)

    Article  Google Scholar 

  61. 61.

    Masri, K.M., Younis, M.I.: Investigation of the dynamics of a clamped–clamped microbeam near symmetric higher order modes using partial electrodes. Int. J. Dyn. Control 3, 173–182 (2015)

    MathSciNet  Article  Google Scholar 

  62. 62.

    Sun, K., Liu, L., Qiu, J., Feng, G.: Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2020).

    Article  Google Scholar 

  63. 63.

    Sun, K., Jianbin, Q., Karimi, H.R., Fu, Y.: Event-triggered robust fuzzy adaptive finite-time control of nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020).

    Article  Google Scholar 

  64. 64.

    Sun, K., Qiu, J., Karimi, H.R., Gao, H.: A novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint. IEEE Trans. Syst. Man Cybern. Syst. (2019).

    Article  Google Scholar 

  65. 65.

    Pu, D., Wei, X., Xu, L., Jiang, Z., Huan, R.: Synchronization of electrically coupled micromechanical oscillators with a frequency ratio of 3:1. Appl. Phys. Lett. 112(1), 013503 (2018)

    Article  Google Scholar 

  66. 66.

    Baguet, S., Nguyen, V.N., Grenat, C., Lamarque, C.-H., Dufour, R.: Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dyn. 95(2), 1203–1220 (2019)

    Article  Google Scholar 

  67. 67.

    Saghir, S., Bellaredj, M.L., Ramini, A.H., Younis, M.I.: Initially curved microplates under electrostatic actuation: Theory and experiment. J. Micromech. Microeng. 26(9), 095004 (2016)

    Article  Google Scholar 

  68. 68.

    Piccirillo, A., Gobbi, A.L.: Physical electrical properties of silicon nitride deposited by PECVD on III–V semiconductors. J. Electrochem. Soc. 137(12), 3910–3917 (1990)

    Article  Google Scholar 

  69. 69.

    Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.: A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst. 12(5), 672–680 (2003)

    Article  Google Scholar 

  70. 70.

    Ruzziconi, L., Bataineh, A.M., Younis, M.I., Cui, W., Lenci, S.: Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling. J. Micromech. Microeng. 23(7), 075012 (2013)

    Article  Google Scholar 

Download references


The work has been developed during the visit of Laura Ruzziconi to King Abdullah University of Science and Technology (KAUST), Saudi Arabia; the kind hospitality is gratefully acknowledged. Nizar Jaber acknowledges support of King Fahd University of Petroleum and Minerals. This work is supported through KAUST Funds.

Author information




LR developed the analysis of the experimental data and performed the theoretical investigation, NJ and LK acquired the experimental data, MLB fabricated the MEMS device, and MIY supervised the project. The present study is developed by a continuous and synergic collaboration among all authors. All authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Mohammad I. Younis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Problem formulation

Appendix 1: Problem formulation

The device is modeled as a parallel plate capacitor, as represented in the schematic in Fig. 18. The microbeam is described in the framework of the Euler–Bernoulli theory. Axial and transversal displacements are denoted as w(z, t) and v(z, t), respectively. Along the vertical axis, we consider as positive direction the one toward the substrate. The microbeam is assumed of length L, width b, and thickness h (sum of all its layers). It is characterized by a straight configuration, constant rectangular cross section, and fixed–fixed boundary conditions. Residual stresses are represented by a constant axial load P, which induces axial displacement at the right end B. Since the lower electrode spans half the length of the microbeam, only this part contributes to the electric force term.

Fig. 18

Schematic of the device mechanical model

The governing equation of motion becomes [1]

$$\ddot{v}+\xi \dot{v}+v^{{\prime \prime \prime \prime}}+\alpha v^{\prime \prime}=-\gamma {F}_{e}$$


$$\alpha =n-ka{\int }_{0}^{1}{\frac{1}{2}\left({v}^{{{\prime}}}\right)}^{2}{\text{d}}z$$

and the electric force term is

$${F}_{e}=\frac{{({V}_{\text{DC}}+{V}_{\text{AC}}{\mathrm{cos}}(\varOmega t))}^{2}}{{(1-v)}^{2}}[U\left({z}_{1}\right)-U({z}_{2})]$$

where \(U\left({z}_{1}\right)\) and \(U\left({z}_{2}\right)\) are the unit step functions defining the lower electrode length and position. The boundary conditions are

$$ v(0,{ }t) = 0\quad v(1,{ }t) = 0\quad v^{{\prime}}(0,{ }t) = 0\quad v^{{\prime}}(1,{ }t) = 0 $$

In Eqs. (A.1)–(A.4), primes denote derivatives with respect to z, and dots denote derivatives with respect to t. The nondimensional variables are (denoted by tilde signs, which are dropped in (A.1)–(A.4) for convenience)

$$ \tilde{z} = \frac{z}{L}\quad \tilde{v} = \frac{v}{d}\quad \tilde{t} = \frac{t}{T} $$

and the nondimensional parameters are

$$ \begin{array}{*{20}l} {ka = (EA)d^{2} /(EJ)} \hfill & {n = (EA)Lw_{B} /(EJ)} \hfill \\ {\gamma = \frac{1}{2}\varepsilon_{0} \varepsilon_{\text{r}} A_{c} L^{3} /\left( {d^{3} EJ} \right)} \hfill & {\xi = cL^{4} /(EJT)} \hfill \\ {T = \sqrt {\left( {\rho AL^{4} } \right)/(EJ)} } \hfill & {\tilde{\varOmega } = \varOmega T} \hfill \\ \end{array} $$

where EA is the axial stiffness, EJ is the bending stiffness, A is the area of the cross section, J is its moment of inertia, E is the effective Young’s modulus, ρ is the material density, d is the equivalent capacitor gap distance between the stationary electrode and the movable one, Ac is the overlapping area between the lower and the upper electrode (half-electrode configuration), c is the viscous damping coefficient, wB is the axial displacement at the right end B, ε0 is the dielectric constant in the free space, and εr is the relative permittivity of the gap space medium with respect to the free space.

The nondimensional axial force n and the time T are identified by referring to the linear part of Eq. (A.1) and matching the first two natural frequencies, which yields n = -145.5 (traction), and T = 0.0000513797.

Assuming these values, the first seven theoretical natural frequencies are estimated as: f1 = 145.2 kHz (first symmetric), f2 = 315.132 kHz (first antisymmetric), f3 = 526.637 kHz (second symmetric), f4 = 788.747 kHz (second antisymmetric), f5 = 1106.05 kHz (third symmetric), f6 = 1480.95 kHz (third antisymmetric), f7 = 1914.77 kHz (fourth symmetric). Up to f5, the theoretical values are very close to the experimental ones. This is even though the identification is conducted using only the first two natural frequencies.

Regarding the gap, the upper electrode is constituted by the conductive layer of gold/chrome applied on top of the microbeam; the silicon nitride (Si3N4), instead, is a dielectric material. For this reason, we consider the equivalent capacitor gap [67], which is composed of the air gap plus the contribution due to the silicon nitride layer, whose dielectric constant is  \({\varepsilon }_{{\mathrm{rSi}}_{3}{\mathrm{N}}_{4}}\) = 7 [68]. Thus, the equivalent capacitor gap is

$$d={d}_{\mathrm{air}}+\frac{{t}_{\mathrm{Si}3{\mathrm{N}}4}}{{\varepsilon }_{\mathrm{rSi}3{\mathrm{N}}4}}=2.714 \upmu{\text{m}}$$

Regarding the parameter ka, this is evaluated by assuming the microbeam of homogeneous isotropic material (silicon nitride) and by referring to the equivalent capacitor gap, which yields ka = 28.868. For the parameter γ, we assume γ = 0.08; this value is slightly higher than the one extracted by matching the distance between the resonant and non-resonant branch of the principal attractors; this allows better observing the underlying phenomena. For the damping, we assume \(\xi \) = 0.053; also this value is slightly more elevated than the one extracted by matching (as far as possible) the lengthening of the principal resonant branch at small \({V}_{\text{AC}}\). This increment is deliberately added since calculating the attractor-basins phase portraits is computationally very demanding, and the higher damping facilitates the convergence of the trajectories to the corresponding attractors.

To derive the reduced-order model, we approximate the microbeam deflection as \(v(z, t)\cong {\sum }_{i=1}^{n}{\phi }_{i}(z){u}_{i}(t)\), where \({\phi }_{i}(z)\) are the corresponding mode shapes, normalized as \({\int }_{0}^{1}{\phi }_{i}{\phi }_{j}{\mathrm{d}}z={\delta }_{ij}\). Considering the third and fifth modes and applying the Galerkin method [69, 70], the 2 d.o.f. Galerkin reduced-order model becomes

$$\begin{aligned}&{\ddot{u}}_{n}+c{\dot{u}}_{n}+{\omega }_{n}^{2}{u}_{n}-ka\left({a}_{n1}{u}_{1}^{3}+{a}_{n2}{u}_{2}^{3}+{a}_{n3}{u}_{1}{u}_{2}^{2}+{a}_{n4}{u}_{2}{u}_{1}^{2}\right)\\&\quad=-\gamma {V}^{2}{\int }_{0}^{0.5}\frac{{\phi }_{n}}{{\left(1-{\phi }_{1}{u}_{1}-{\phi }_{2}{u}_{2}\right)}^{2}}{\mathrm{d}}z\quad {\mathrm{for}}\,\,n = 1, 2\end{aligned}$$

where the first equation (n = 1) refers to the third mode and the second (n = 2) to the fifth. The electric force term is integrated numerically. The obtained coefficients are reported in Table 2.

Table 2 Coefficients of the 2 d.o.f. Galerkin reduced-order model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruzziconi, L., Jaber, N., Kosuru, L. et al. Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis. Nonlinear Dyn (2021).

Download citation


  • MEMS
  • Internal resonance
  • Higher-order modes
  • Attractor-basins phase portraits
  • Dynamical integrity
  • Global analysis