Dynamic event-based dissipative asynchronous control for T–S fuzzy singular Markov jump LPV systems against deception attacks


In this article, the issue of dissipative asynchronous control for continuous-time T–S fuzzy singular Markov jump linear parameter-varying systems against dual deception attacks under the dynamic event-triggered transmission protocol (DETP) is investigated. Firstly, the DETP is offered to further abate the channel congestion caused by the limited bandwidth. Meanwhile, the mutually independent random variables subject to Bernoulli distribution are utilized to model the dual deception attacks, which can destroy the integrity of the considered system to some degree. Besides, since the controller can not accurately receive the system information, a hidden Markov model is established to depict the asynchronous phenomenon. Specifically, in the light of the parameter-dependent Lyapunov functional, the stochastic admissible criterion of the closed-loop system with certain dissipative performance and uncertain transition rates is obtained. Ulteriorly, based on the parameter-dependent linear matrix inequalities, a cooperative design technique of asynchronous controller and the weighting matrix of the DETP is proposed. Finally, two examples of chaotic systems and electric truck-trailer systems under the DETP are given to illustrate the feasibility of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Hoffmann, C., Werner, H.: A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Trans. Control Syst. Tech. 23(2), 416–433 (2014)

    Google Scholar 

  2. 2.

    Antonio, S.: Stability analysis of LPV systems: Scenario approach. Automatica 104, 233–237 (2019)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Chen, J.L., Zhang, W.D., Cao, Y.Y.: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE Trans. Syst. Man Cybern. 47(7), 1336–1347 (2016)

    Google Scholar 

  4. 4.

    Xing, M.Q., Wang, Y.Q., Zhuang, G.M., Chen, F.: Dynamic event-based dissipative asynchronous control for singular Markov jump LPV systems with general transition rates. IET Control Theory Appl. (2020). https://doi.org/10.1049/cth2.12067

    Article  Google Scholar 

  5. 5.

    Wang, Y., Zhuang, G.M., Chen, X., Wang, Z., Chen, F.: Dynamic event-based finite-time mixed \(H_{\infty }\) and passive asynchronous filtering for T-S fuzzy singular Markov jump systems with general transition rates. Nonlinear Anal. Hybrid Syst. 36, 100874 (2020)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Zhang, B., Song, Y.: Asynchronous Constrained Resilient Robust Model Predictive Control for Markovian Jump Systems. IEEE Trans. Ind. Inform. 16(11), 7025–7034 (2020)

    Google Scholar 

  7. 7.

    Li, F., Xu, S., Shen, H.: Passivity-Based Control for Hidden Markov Jump Systems with Singular Perturbations and Partially Unknown Probabilities. IEEE Trans. Autom. Control 65(8), 3701–3706 (2020)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gunes, B., Wingerden, J.W., Verhaegen, M.: Predictor-based tensor regression (PBTR) for LPV subspace identification. Automatica 79, 235–243 (2017)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Zhu, Y., Zhong, Z., Zheng, W.X.: HMM-Based \({\cal{H}} _ {\infty } \) Filtering for Discrete-Time Markov Jump LPV Systems Over Unreliable Communication Channels. IEEE Trans. Syst. Man Cybern. 48(12), 2035–2046 (2017)

    Google Scholar 

  10. 10.

    Wang, X., Xia, J., Wang, J.: Reachable set estimation for Markov jump LPV systems with time delays. Appl. Math. Comput. 376, 125117 (2020)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Kim, S.H.: \({\cal{H}}_2\) control of Markovian jump LPV systems with measurement noises: Application to a DC-motor device with voltage fluctuations. J. Frankl. Inst. 354(4), 1784–1800 (2017)

    MATH  Google Scholar 

  12. 12.

    Cheng, J., Zhang, D., Qi, W., Cao, J., Shi, K.: Finite-time stabilization of T–S fuzzy semi-Markov switching systems: A coupling memory sampled-data control approach. J. Frankl. Inst. 357(16), 11265–11280 (2019)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Dong, S., Chen, C.L.P., Fang, M., Wu, Z.: Dissipativity-based asynchronous fuzzy sliding mode control for T–S fuzzy hidden Markov jump systems. IEEE Trans. Cybern. 50(9), 4020–4030 (2020)

    Google Scholar 

  14. 14.

    Ren, Y., Li, Q., Ding, D.: Dissipativity-preserving model reduction for Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 27(4), 659–670 (2019)

    Google Scholar 

  15. 15.

    Zhang, J., Peng, C.: Event-triggered \(H_{\infty }\) filtering for networked Takagi–Sugeno fuzzy systems with asynchronous constraints. IET Signal Process. 9(5), 403–411 (2015)

    Google Scholar 

  16. 16.

    Kwon, W., Jin, Y., Lee, S.M.: PI-type event-triggered \(H_{\infty }\) filter for networked T–S fuzzy systems using affine matched membership function approach. Appl. Math. Comput. 385, 125420 (2020)

    MathSciNet  Google Scholar 

  17. 17.

    Joo, Y.H., Nagamani, G.: Event-triggered stabilisation for T–S fuzzy systems with asynchronous premise constraints and its application to wind turbine system. IET Control Theory Appl. 13(10), 1532–1542 (2019)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Kim, S.H.: Dissipative control of Markovian jump fuzzy systems under nonhomogeneity and asynchronism. Nonlinear Dyn. 97(3), 629–646 (2019)

    MATH  Google Scholar 

  19. 19.

    Nguyen, T.B., Kim, S.H.: Dissipative control of interval type-2 nonhomogeneous Markovian jump fuzzy systems with incomplete transition descriptions. Nonlinear Dyn. 100(2), 1289–1308 (2020)

    Google Scholar 

  20. 20.

    Wu, H.M., Tafreshi, R.: Air-fuel ratio control of lean-burn SI engines using the LPV-based fuzzy technique. IET Control Theory Appl. 12(10), 1414–1420 (2018)

    MathSciNet  Google Scholar 

  21. 21.

    Mehrabian, A.R., Hashemi, S.V.: Fuzzy linear parameter varying modeling and control of an anti-air missile. Int. J. Control Autom. Syst. 5(3), 324–328 (2007)

    Google Scholar 

  22. 22.

    Rajkumar, R., Lee, I., Sha, L.: Cyber-physical systems: the next computing revolution. In: Proceesings of the 47th Design Automation Conference, pp. 731–736 DAC (2010)

  23. 23.

    Xu, Z., He, D., Wang, H.: A novel proxy-oriented public auditing scheme for cloud-based medical cyber physical systems. J. Inform. Security Appl. 51, 102453 (2020)

    Google Scholar 

  24. 24.

    Ma, Q., Xu, S.: Consensus switching of second-order multiagent systems with time delay. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3011448

    Article  Google Scholar 

  25. 25.

    Xia, X., Liu, C., Wang, H.: A Design of Cyber-Physical System Architecture for Smart City. Recent Trends in Intelligent Computing, Communication and Devices, pp. 967–973. Springer, Singapore (2020)

    Google Scholar 

  26. 26.

    Cheng, J., Park, J.H., Zhao, X., Karimi, H.R., Cao, J.: Quantized nonstationary filtering of network-based Markov switching RSNSs: a multiple hierarchical structure strategy. IEEE Trans. Autom. Control 65(11), 4816–4823 (2019)

    Google Scholar 

  27. 27.

    Yuan, H., Xia, Y., Yang, H.: Resilient state estimation of cyber-physical system with multichannel transmission under DoS attack. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2964586

    Article  Google Scholar 

  28. 28.

    Zhang, H., Wang, Z., Yan, H.C., Yang, F., Zhou, X.: Adaptive event-triggered transmission scheme and \(H_{\infty }\) filtering co-design over a filtering network with switching topology. IEEE Trans. Cybern. 49(12), 4296–4307 (2019)

    Google Scholar 

  29. 29.

    Fu, W., Qin, J., Shi, Y.: Resilient consensus of discrete-time complex cyber-physical networks under deception attacks. IEEE Trans Ind. Inform. 16(7), 4868–4877 (2019)

    Google Scholar 

  30. 30.

    Tian, E., Peng, C.: Memory-based event-triggering \({\cal{H}}_{\infty } \) load frequency control for power systems under deception attacks. IEEE Trans. Cybern. 50(11), 4610–4618 (2020)

    Google Scholar 

  31. 31.

    Yuan, J., Wang, Y., Ji, Z.: A differentially private square root unscented Kalman filter for protecting process parameters in ICPSs. ISA Trans. 104, 44–52 (2020)

    Google Scholar 

  32. 32.

    Wang, H.T., Wang, Y.Q., Zhuang, G.M.: Asynchronous \(H_{\infty }\)controller design for neutral singular Markov jump systems under dynamic event-triggered schemes. J. Frankl. Inst. (2020). https://doi.org/10.1016/j.jfranklin.2020.10.034

    Article  MATH  Google Scholar 

  33. 33.

    Yan, H.C., Hu, C.Y., Zhang, H., Karimi, H.R., Jiang, X.W.: \(H_{\infty }\) output tracking control for networked systems with adaptively adjusted event-triggered scheme. IEEE Trans. Syst. Man Cybernet. 49(10), 2050–2058 (2019)

    Google Scholar 

  34. 34.

    Cheng, J., Park, J.H., Cao, J., Qi, W.: A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dyn. 100, 509–521 (2020)

    MATH  Google Scholar 

  35. 35.

    Qi, Y., Zeng, P., Bao, W.: Event-triggered and self-triggered \({\cal{H}}_{\infty } \) control of uncertain switched linear systems. IEEE Trans Syst. Man Cybern. Syst. 50(4), 1442–1454 (2018)

    Google Scholar 

  36. 36.

    Qi, W.H., Zong, G.D., Zheng, W.X.: Adaptive event-triggered SMC for stochastic switching systems with semi-Markov process and application to boost converter circuit model. IEEE Trans. Circuits Syst. I: Regular Papers (2020). https://doi.org/10.1109/TCSI.2020.3036847

    Article  Google Scholar 

  37. 37.

    Peng, C., Han, Q., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21(1), 164–170 (2013)

    Google Scholar 

  38. 38.

    Liu, Y., Guo, B.Z., Park, J.H., et al.: Event-based reliable dissipative filtering for T–S fuzzy systems with asynchronous constraints. IEEE Trans. Fuzzy Syst. 26(4), 2089–2098 (2018)

    Google Scholar 

  39. 39.

    Chen, Z.R., Zhang, B.Y., et al.: Event-based control for networked T–S fuzzy systems via auxiliary random series approach. IEEE Trans. Cyber. 50(5), 2166–2175 (2018)

    Google Scholar 

  40. 40.

    Cheng, J., Ahn, C.K., Karim, H.R., et al.: An event-based asynchronous approach to Markov jump systems with hidden mode detections and missing Measurements. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1749–1758 (2019)

    Google Scholar 

  41. 41.

    Qiu, J., Sun, K., Wang, T.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Google Scholar 

  42. 42.

    Tian, E., Wang, Z., Zou, L.: Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int. J. Robust Nonlinear Control 29(5), 1484–1498 (2019)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Ge, X., Han, Q.L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans Cybern. 49(1), 171–183 (2017)

    Google Scholar 

  44. 44.

    Lehmann, D., Lunze, J.: Extension and experimental evaluation of an event-based state-feedback approach. Control Eng. Practice 19(2), 101–112 (2011)

    Google Scholar 

  45. 45.

    Yang, R.H., Zhang, H., Feng, G., Yan, H.C., Wang, Z.P.: Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control. Automatica 102, 129–136 (2019)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Zhang, Q., Yan, H., Zhang, H.: \({\cal{H}}_{\infty } \) control of singular system based on stochastic cyber-attacks and dynamic event-triggered mechanism. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1016/j.nahs.2020.100943

    Article  Google Scholar 

  47. 47.

    Wang, Y.Q., Chen, F., Zhuang, G.M.: Dynamic event-based reliable dissipative asynchronous control for stochastic Markov jump systems with general transition probabilities. Nonlinear Dyn. 101(1), 465–485 (2020)

    Google Scholar 

  48. 48.

    Wang, H.T., Wang, Y.Q., Zhuang, G.M., Lu, J.W.: Asynchronous passive dynamic event-triggered controller design for singular Markov jump systems with general transition rates under stochastic cyber-attacks. IET Control Theory Appl. 14(16), 2291–2302 (2020)

    Google Scholar 

  49. 49.

    Tagaki, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. Syst. Man Cybern. Syst. 15(1), 116–132 (1985)

    Google Scholar 

  50. 50.

    Yue, D., Tian, E., Han, Q.L.: A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans. Autom. Control 58(2), 475–481 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yanqian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xing, M., Wang, Y., Zhuang, G. et al. Dynamic event-based dissipative asynchronous control for T–S fuzzy singular Markov jump LPV systems against deception attacks. Nonlinear Dyn 103, 1709–1731 (2021). https://doi.org/10.1007/s11071-021-06200-0

Download citation


  • Dynamic event-triggered transmission protocol
  • T–S fuzzy singular Markov jump linear parameter-varying systems
  • Cyber-physical systems
  • General transition rates
  • Deception-attacks