A new semi-analytical technique for nonlinear systems based on response sensitivity analysis


In this paper, a new semi-analytical method, namely the time-domain minimum residual method, is proposed for the nonlinear problems. Unlike the existing approximate analytical method, this method does not depend on the small parameter and can converge to the exact analytical solutions quickly. The method is mainly threefold. Firstly, the approximate analytical solution of the nonlinear system \({\varvec{F\left( \ddot{x},{\dot{x}},x\right) }}={\varvec{0}}\) is expanded as the appropriate basis function and a set of unknown parameters, i.e., \({\varvec{x(t)}}\approx \sum _{i=0}^{N}{\varvec{a_i\chi _i(t)}}\). Then, the problem of solving analytical solutions is transformed into finding a set of parameters so that the residual \({\varvec{R}}={\varvec{F}}\left( \sum _{i=0}^{N}a_i\ddot{\chi }_i,\sum _{i=0}^{N}a_i{\dot{\chi }}_i,\sum _{i=0}^{N}a_i\chi _i\right) \) is minimum over a period, i.e., \(\underset{{\varvec{a}}\in {\mathscr {A}}}{\min }\int _{0}^T {\varvec{R}}({\varvec{a}},t)^{T} {\varvec{R}}({\varvec{a}},t) \mathrm {d} t\). The nonlinear equation \({\varvec{F\left( \ddot{x},{\dot{x}},x\right) }}={\varvec{0}}\) is regarded as the objective function to optimize, and the process of solving the analytic solution is transformed into a nonlinear optimization process. Finally, the optimization process is iteratively solved by the enhanced response sensitivity approach. Four numerical examples are employed to verify the feasibility and effectiveness of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22


  1. 1.

    Dowell, E.H.: Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th 3137 (2013)

  2. 2.

    Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control, vol. 10. Springer, New York (1999)

    Google Scholar 

  3. 3.

    Poisson, S.D.: A Treatise of Mechanics, vol. 1-3. Longman and Company, London (1842)

    Google Scholar 

  4. 4.

    Lindstedt, A.: Über die integration einer für die störungstheorie wichtigen differentialgleichung. Astronomische Nachrichten 103(14), 211–220 (1882)

    MATH  Article  Google Scholar 

  5. 5.

    Chien, W.Z.: The intrinsic theory of thin shells and plates. I. General theory. Q. Appl. Math. 1(4), 297–327 (1944)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Lighthill, M.J.C.I.X.: A technique for rendering approximate solutions to physical problems uniformly valid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 40(311), 1179–1201 (1949)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Kuo, Y.H.: On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers. J. Math. Phys. 32(1–4), 83–101 (1953)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Tsien, H.S.: The Poincaré–Lighthill–Kuo method. Adv. Appl. Mech. 4, 281–349 (1956)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Poincare, H.: New Methods of Celestial Mechanics, vol. 1-3. NASA, Washington, DC (1967)

    Google Scholar 

  10. 10.

    Nayfeh, A.H.: Perturbation Methods. Wiley, Hoboken (1973)

    Google Scholar 

  11. 11.

    Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC, London (2003)

    Google Scholar 

  13. 13.

    Nayfeh, A.H., Hassan, S.D.: The method of multiple scales and non-linear dispersive waves. J. Fluid Mech. 48(3), 463–475 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Nayfeh, A.H.: Order reduction of retarded nonlinear systems-the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51(4), 483–500 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Mitropolsky, I.A.: Averaging method in non-linear mechanics. Int. J. Non-Linear Mech. 2(1), 69–96 (1967)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Sanders, J.A., Verhulst, F.M., James, A.: Averaging Methods in Nonlinear Dynamical Systems, vol. 59. Springer, Berlin (2007)

    Google Scholar 

  17. 17.

    Alam, M.S.: A unified Krylov–Bogoliubov–Mitropolskii method for solving nth order nonlinear systems. J. Frank. Inst. 339(2), 239–248 (2002)

    MATH  Article  Google Scholar 

  18. 18.

    Cheung, Y.K., Chen, S.H., Lau, S.L.: A modified Lindstedt–Poincaré method for certain strongly non-linear oscillators. Int. J. Non-Linear Mech. 26(3–4), 367–378 (1991)

    MATH  Article  Google Scholar 

  19. 19.

    Barkham, P.G.D., Soudack, A.C.: An extension to the method of Kryloff and Bogoliuboff. Int. J. Control 10(4), 377–392 (1969)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Yuste, S.B., Bejarano, J.D.: Improvement of a Krylov–Bogoliubov method that uses Jacobi elliptic functions. J. Sound Vib. 139(1), 151–163 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Chen, S.H., Cheung, Y.K.: An elliptic Lindstedt–Poincaré method for certain strongly non-linear oscillators. Nonlinear Dyn. 12(3), 199–213 (1997)

    MATH  Article  Google Scholar 

  22. 22.

    Garcia, M.J., Bejarano, J.D., Yuste, S.B.: Generalized Fourier series for the study of limit cycles. J. Sound Vib. 125(1), 13–21 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Chen, Y.M., Liu, J.K.: Elliptic harmonic balance method for two degree-of-freedom self-excited oscillators. Commun. Nonlinear Sci. Numer. Simul. 14(3), 916–922 (2009)

    Article  Google Scholar 

  24. 24.

    Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 48(4), 959–964 (1981)

    MATH  Article  Google Scholar 

  25. 25.

    Lau, S.L., Zhang, W.S.: Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method. J. Appl. Mech. 59(1), 153–160 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Liu, G., Lv, Z.R., Liu, J.K., Chen, Y.M.: Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. Int. J. Non-Linear Mech. 100, 10–19 (2018)

    Article  Google Scholar 

  27. 27.

    Fang, L., Wang, J.D., Tan, X.B.: An incremental harmonic balance-based approach for harmonic analysis of closed-loop systems with Prandtl–Ishlinskii operator. Automatica 88, 48–56 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph. D. Thesis, Shanghai Jiao Tong University Shanghai (1992)

  29. 29.

    Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 30(3), 371–380 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Liao, S.J.: Homotopy analysis method-a kind of nonlinear analytical technique not depending on small parameter. Chin. Q. Mech. 018(003), 196–200 (1997)

    Google Scholar 

  31. 31.

    Liao, S.J.: An explicit, totally analytic approximate solution for Blasius’ viscous flow problems. Int. J. Non-Linear Mech. 34(4), 759–778 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Yang, Z.C., Liao, S.J.: A HAM-based wavelet approach for nonlinear ordinary differential equations. Commun. Nonlinear Sci. Numer. Simul. 48, 439–453 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Nayfeh, A.H.: Reduced-order models of weakly nonlinear spatially continuous systems. Nonlinear Dyn. 16(2), 105–125 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Hay, A., Borggaard, J.T., Pelletier, D.: Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J. Fluid Mech. 629(1), 41–72 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Hay, A., Borggaard, J.T., Akhtar, I., Pelletier, D.: Reduced-order models for parameter dependent geometries based on shape sensitivity analysis. J. Comput. Phys. 229(4), 1327–1352 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Liu, G., Wang, L., Luo, W.L., Liu, J.K., Lu, Z.R.: Parameter identification of fractional order system using enhanced response sensitivity approach. Commun. Nonlinear Sci. Numer. Simul. 67, 492–505 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Liu, G., Wang, L., Liu, J.K., Chen, Y.M., Lu, Z.R.: Identification of an Airfoil–Store system with cubic nonlinearity via enhanced response sensitivity approach. AIAA J. 56(12), 4977–4987 (2018)

    Article  Google Scholar 

  38. 38.

    Liu, G., Wang, L., Liu, J.K., Lu, Z.R.: Parameter identification of nonlinear aeroelastic system with time-delayed feedback control. AIAA J. 58(1), 415–425 (2019)

    Article  Google Scholar 

  39. 39.

    Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curves. SIAM Rev. 34(4), 561–580 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6(1), 1–35 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Lu, Z.R., Wang, L.: An enhanced response sensitivity approach for structural damage identification: convergence and performance. Int. J. Numer. Methods Eng. 111(13), 1231–1251 (2017)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Froese, B.: Homotopy Analysis Method for Axisymmetric Flow of a Power Law Fluid Past a Stretching Sheet. Ph.D. Thesis, Trinity Western University, Kanada, CA (2007)

  43. 43.

    Chen, S.H.: Quantitative Analysis Method of Strongly Nonlinear Vibration System. China Science Publishing and Media Ltd, Beijing (2007)

    Google Scholar 

  44. 44.

    Chen, Y.M., Liu, J.K.: Homotopy analysis method for limit cycle flutter of airfoils. Appl. Math. Comput. 203(2), 854–863 (2008)

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154(1), 117–124 (1992)

    MATH  Article  Google Scholar 

  46. 46.

    Liu, Y.Z., Chen, Q.L., Chen, W.L.: Mechanics of vibration (edition 3). High Education Press 201(1) (2018)

  47. 47.

    Liu, G., Yu, M.L., Wang, L., Yin, Z.Y., Liu, J.K., Lu, Z.R.: Rapid parameter identification of linear time-delay system from noisy frequency domain data. Appl. Math. Model. 83, 736–753 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27(3), 503–517 (1992)

    MATH  Article  Google Scholar 

  49. 49.

    Huang, J.L., Zhu, W.D.: A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. J. Vib. Acoust. 139(2), 021010 (2017)

    Article  Google Scholar 

Download references


Grateful acknowledgment is made to Ying-ying Zhang’s help in language checking of this paper. The present investigation was performed under the support of the National Natural Science Foundation of China (Nos. 11972380 and 11702336) and Guangdong Province Natural Science Foundation (No. 2018B030311001).

Author information



Corresponding author

Correspondence to Ji-ke Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The MATLAB implementation codes in this paper can be downloaded at Guang Liu’s Website, Guang Liu’s Blog or Guang Liu’s ResearchGate

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Lu, ZR., Wang, L. et al. A new semi-analytical technique for nonlinear systems based on response sensitivity analysis. Nonlinear Dyn (2021). https://doi.org/10.1007/s11071-020-06197-y

Download citation


  • Nonlinear system
  • Semi-analytical solution
  • Nonlinear optimization
  • Time-domain minimum residual method