On the destabilization of a periodically driven three-dimensional torus


We report experimental evidence of the destabilization of a 3D torus obtained when a small subharmonic perturbation is added to a 2D torus characteristic of a driven relaxation oscillator. The Poincaré sections indicate that the torus breakup is sensitive to the phase difference between the main driving frequency and its first subharmonic perturbing component. The observed transition confirms the Newhouse, Ruelle and Takens quasiperiodic transition to chaos on a 3D torus. Numerical results on a sinusoidally perturbed circle map mirror the experimental results and confirm the key role of the phase difference in the transition between distinct dynamical regimes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Landau, L.D.: On the problem of turbulence. Akad. Nauk. Dokl. 44, 339–342 (1944)

    MathSciNet  Google Scholar 

  2. 2.

    Landau, L.D., Lifshiz, M.M.: Fluid Mechanics. Pergamon, London (1959)

    Google Scholar 

  3. 3.

    Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–92 (1971)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Newhouse, S.E., Ruelle, D., Takens, F.: Occurrence of strange axiom A attractors near quasi-periodic flows on \(T^m\) (\(m = 3\) or more). Commun. Math. Phys. 64, 819–825 (1978)

    MATH  Google Scholar 

  5. 5.

    Battelino, P.M., Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors on a 3D-Torus, and Torus Break-up. Physica D 39(2–3), 299–314 (1989)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Battelino, P.M.: Persistence of three-frequency quasiperiodicity under large perturbations. Phys. Rev. A 38, 1495–1502 (1988)

    MathSciNet  Google Scholar 

  7. 7.

    Curry, J.H., Yorke, J.A.: A Transition from Hopf Bifurcation to Chaos: Computer Experiments, Lecture Notes in Mathematics with Maps on \(R^2\), vol. 668, pp. 48–66. Springer, Berlin (1978)

    Google Scholar 

  8. 8.

    Franceschini, V., Tebaldi, C.: Breaking and disappearance of Tori. Commun. Math. Phys. 94, 317–319 (1984)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Sano, M., Sawada, Y.: Transition from quasiperiodicity to chaos in a system of coupled nonlinear oscillator. Phys. Lett. A 97, 73–76 (1983)

    MathSciNet  Google Scholar 

  10. 10.

    Cumming, A., Linsay, P.S.: Quasiperiodicity and chaos in a system with three competing frequencies. Phys. Rev. Lett. 60, 2719–2722 (1988)

    MathSciNet  Google Scholar 

  11. 11.

    Linsay, P.S., Cummings, A.: Three-frequency quasiperiodicity, phase locking, and the onset of chaos. Physica D 40, 196–217 (1989)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Matsumoto, T., Chua, L.O., Tokunaga, R.: Chaos via Torus breakdown. IEEE Trans. Circuit Syst. 34(3), 240–253 (1987)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Matsumoto, T., Chua, L.O., Komuro, M.: The double scroll. IEEE Trans. Circuits Syst. 32(8), 797–818 (1985)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Anishchenko, V.S., Safonova, M.A., Chua, L.O.: Confirmation of the Afraimovich–Shilnikov Torus-breakdown theorem via a Torus circuit. IEEE Trans. Circuits Syst. 40(11), 792–800 (1993)

    MATH  Google Scholar 

  15. 15.

    Anishchenko, V.S., Nikolaev, S., Kurths, J.: Winding number locking on a two dimensional torus: synchronization of quasiperiodic motions. Phys. Rev. E 73, 056202 (2006)

    MathSciNet  Google Scholar 

  16. 16.

    Baptista, M.S., Caldas, I.L.: Dynamics of the two-frequency torus breakdown in the driven double scroll circuit. Phys. Rev. E. 58(4), 4413–4420 (1993)

    Google Scholar 

  17. 17.

    Di Garbo, A., Euzzor, S., Ginoux, J.M., Arecchi, F.T., Meucci, R.: Delayed dynamics in an electronic relaxation oscillator. Phys. Rev. E 100, 032224 (2019)

    Google Scholar 

  18. 18.

    Grebogi, C., Ott, E.E., Pelikan, S., Yorke, J.A.: Strange attractors that are not chaotic. Physica D 13, 261–268 (1984)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Ditto, W.L., Spano, M.L., Savage, H.T., Rauseo, S.N., Heagy, J., Ott, E.: Experimental observation of a strange nonchaotic attractor. Phys. Rev. Lett. 65, 533–536 (1990)

    Google Scholar 

  20. 20.

    Kuznetsov, S.P., Pikovsky, A.S., Feudel, U.: Birth of a strange nonchaotic attractor: a renormalization group analysis. Phys. Rev. E 51(3), R1629 (1995)

    MathSciNet  Google Scholar 

  21. 21.

    Ngamga, E.J., Buscarino, A., Frasca, M., Fortuna, L., Prasad, A., Kurths, J.: Recurrence analysis of strange nonchaotic dynamics in driven excitable systems. Chaos An Interdiscip. J. Nonlinear Sci. 18(1), 013128 (2008)

    Google Scholar 

  22. 22.

    Euzzor, S., Di Garbo, A., Ginoux, J.M., Arecchi, F.T., Meucci, R.: Implementing Poincaré sections for a chaotic relaxation oscillator. TCAS-II 67, 395–399 (2020)

    Google Scholar 

  23. 23.

    Meucci, R., Gadomski, W., Ciofini, M., Arecchi, F.T.: Experimental control of chaos by means of weak parametric perturbations. Phys. Rev. E 49(4), R2528–R2531 (1994)

    Google Scholar 

  24. 24.

    Zambrano, S., Allaria, E., Brugioni, S., Leyva, I., Meucci, R., Sanjuan, M.A.F., Arecchi, F.T.: Numerical and experimental exploration of phase control of chaos. Chaos 16(1), 013111 (2006)

    MATH  Google Scholar 

  25. 25.

    Meucci, R., Euzzor, S., Pugliese, E., Zambrano, S., Gallas, M.R., Gallas, J.A.C.: Optimal phase-control strategy for damped-driven duffing oscillators. Phys. Rev. Lett. 116(4), 044101 (2015)

  26. 26.

    Zambrano, S., Marino, I.P., Salvadori, F., Meucci, R., Sanjuan, M.A.F., Arecchi, F.T.: Phase control of intermittency in dynamical systems. Phys. Rev. E 74(1), 016202 (2006)

    Google Scholar 

  27. 27.

    Zambrano, S., Seoane, J.M., Marino, I.P., Sanjuan, M.A.F., Euzzor, S., Meucci, R., Arecchi, F.T.: Phase control of excitable systems. J. Phys. 10, 073030 (2008)

    Google Scholar 

  28. 28.

    Seoane, J.M., Zambrano, S., Euzzor, S., Meucci, R., Arecchi, F.T., Sanjuan, M.A.F.: Avoiding escapes in open dynamical systems using phase control. Phys. Rev. E 78(1), 016205 (2008)

    Google Scholar 

  29. 29.

    Ginoux, J.M., Meucci, R., Euzzor, S.: Torus breakdown and homoclinic chaos in a glow discharge tube. Int. J. Bifurc. Chaos 27(14), 1750220 (2017)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Ginoux, J.M., Meucci, R., Euzzor, S., Di Garbo, A.: Torus breakdown in a Uni junction memristor. Int. J. Bifur. Chaos 28(10), 1850128 (2018)

    Google Scholar 

  31. 31.

    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. John Wiley and Sons Inc, New York (1995)

    Google Scholar 

  32. 32.

    Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York (1994)

    Google Scholar 

  33. 33.

    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos an Introduction to Dynamical Systems. Springer, New York (1996)

    Google Scholar 

  34. 34.

    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  35. 35.

    Feigenbaum, M.J., Kadanoff, L.P., Shenker, S.J.: Quasiperiodicity in dissipative systems, a renormalization group analysis. Physica D 5, 370–386 (1982)

    MathSciNet  Google Scholar 

  36. 36.

    Rand, R., Ostund, S., Sethna, J., Siggia, E.: Universal transition from quasiperiodicity to chaos in dissipative systems. Phys. Rev. Lett. 49, 132–135 (1982)

    MathSciNet  Google Scholar 

  37. 37.

    Jensen, M.H., Bak, P., Bohr, T.: Transition to chaos by interaction of resonances in dissipative systems I. Phys. Rev. A 30, 1960–1969 (1984)

    MathSciNet  Google Scholar 

  38. 38.

    Cvitanovic, P., Jensen, M.H., Kadanoff, L.P., Procaccia, I.: Renormanlization unstable manifolds, and the fractal structure of mode locking. Phys. Rev. Lett. 55, 343–346 (1985)

    MathSciNet  Google Scholar 

  39. 39.

    Stavans, J., Heslot, F., Libchaber, A.: Fixed winding number and the quasiperiodicity route to chaos in a convective fluid. Phys. Rev. Lett. 55, 596–599 (1985)

    Google Scholar 

  40. 40.

    Jensen, M.H., Kadanoff, L., Libchaber, A., Procaccia, I., Stavans, J.: Global universality at the onset of chaos: results of a forced Rayleigh–Benard experiment. Phys. Rev. Lett. 55, 2798–2801 (1985)

    Google Scholar 

  41. 41.

    Zhang, H., Chen, G.: Single-input multi-ouput state-feedback chaotification of general discrete systems. Int. J. Bifur. Chaos 14(9), 3317–3323 (2004)

    MATH  Google Scholar 

  42. 42.

    Arnold, V.A.: Mathemathical Methods of Classical Mechanics. Springer, New York (1978)

    Google Scholar 

  43. 43.

    Broer, H.W.: Survey on dissipative KAM theory including quasi-periodic bifurcation theory based on lectures by Henk Broer. Lond. Math. Soc. Lect. Note Ser. 306, 303–355 (2005)

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. Meucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Euzzor, S., Di Garbo, A., Ginoux, JM. et al. On the destabilization of a periodically driven three-dimensional torus. Nonlinear Dyn 103, 1969–1977 (2021). https://doi.org/10.1007/s11071-020-06174-5

Download citation


  • Oscillators
  • Nonlinear systems
  • Nonlinear dynamical systems
  • Electronic circuits
  • Chaos