Skip to main content
Log in

Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Subjected to dynamic excitations, bolted joint interfaces exhibit nonlinear characteristics that significantly affect the dynamic response of assembled structures. In this paper, a novel modeling method is developed to improve the prediction accuracy of the tangential contact behavior of bolted joint interfaces. This method is based on the framework of the Iwan model and builds the relationship between the Iwan density function and the distribution of the contact pressure. It is the first time to give an explicit physical significance of the Iwan density function. The effectiveness of the proposed model is validated well by comparing with published experiments. Then the proposed model is integrated into a numerical model of a bolted joint structure and combined with the alternating frequency/time method to study its applicability in dynamics analysis. The model is fully compatible with the current state-of-the-art numerical analysis tools. The results show that the simulated interface responses are in good agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. De Benedetti, M., Garofalo, G., Zumpano, M., et al.: On the damping effect due to bolted junctions in space structures subjected to pyro-shock. Acta Astronaut. 60, 947–956 (2007)

    Article  Google Scholar 

  2. Tang, Q., Li, C., She, H., et al.: Modeling and dynamic analysis of bolted joined cylindrical shell. Nonlinear Dyn. 93, 1953–1975 (2018)

    Article  Google Scholar 

  3. Brake, M.R.W., et al.: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Springer, Berlin (2017)

    Google Scholar 

  4. Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125, 169–181 (1997)

    Article  MATH  Google Scholar 

  5. Gaul, L., Nitsche, R.: The role of friction in mechanical joints. Appl. Mech. Rev. 54, 93–106 (2001)

    Article  Google Scholar 

  6. Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84, 25–33 (2005)

    Article  Google Scholar 

  7. Ames, N.M., Lauffer, J.P., Jew, M.D., et al.: Handbook on dynamics of jointed structures, No. SAND2009-4164. Sandia National Laboratories (2009)

  8. Ouyang, H., Oldfield, M.J., Mottershead, J.E.: Experimental and theoretical studies of a bolted joint excited by a torsional dynamic load. Int. J. Mech. Sci. 48, 1447–1455 (2006)

    Article  Google Scholar 

  9. Kim, J., Yoon, J.C., Kang, B.S.: Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 31, 895–911 (2007)

    Article  MATH  Google Scholar 

  10. Reid, J.D., Hiser, N.R.: Detailed modeling of bolted joints with slippage. Finite Elem. Anal. Des. 41, 547–562 (2005)

    Article  Google Scholar 

  11. Schwingshackl, C.W., Di Maio, D., Sever, I., et al.: Modeling and validation of the nonlinear dynamic behavior of bolted flange joints. J. Eng. Gas Turb. Power 135, 122504 (2013)

    Article  Google Scholar 

  12. Wu, Y.G., Li, L., Fan, Y., et al.: Design of dry friction and piezoelectric hybrid ring dampers for integrally bladed disks based on complex nonlinear modes. Comput. Struct. 233, 106237 (2020)

    Article  Google Scholar 

  13. Firrone, C.M., Zucca, S., Gola, M.M.: The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method. Int. J. Non-Linear Mech. 46, 363–375 (2011)

    Article  Google Scholar 

  14. Cigeroglu, E., An, N., Menq, C.H.: A microslip friction model with normal load variation induced by normal motion. Nonlinear Dyn. 50, 609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Armand, J., Salles, L., Schwingshackl, C.W., et al.: On the effects of roughness on the nonlinear dynamics of a bolted joint: a multiscale analysis. Eur. J. Mech. A Solid 70, 44–57 (2018)

    Article  Google Scholar 

  16. Segalman, D.J.: A four-parameter Iwan model for lap-type joints. J. Appl. Mech. 72, 752–760 (2005)

    Article  MATH  Google Scholar 

  17. Segalman, D.J.: Modelling joint friction in structural dynamics. Struct. Control Health 13, 430–453 (2006)

    Article  Google Scholar 

  18. Miller, J.D., Quinn, D.D.: A two-sided interface model for dissipation in structural systems with frictional joints. J. Sound Vib. 321, 201–219 (2009)

    Article  Google Scholar 

  19. Song, Y., Hartwigsen, C.J., McFarland, D.M., et al.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273, 249–276 (2004)

    Article  Google Scholar 

  20. Armand, J., Pesaresi, L., Salles, L., et al.: A modelling approach for the nonlinear dynamics of assembled structures undergoing fretting wear. Proc. R. Soc. A Math. Phys. 475, 20180731 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Iwan, W.D.: On a class of models for the yielding behavior of continuous and composite systems. J. Appl. Mech. 34, 612–617 (1967)

    Article  Google Scholar 

  22. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. J. Appl. Mech. 33, 893–900 (1966)

    Article  Google Scholar 

  23. Valanis, K.C.: A theory of viscoplasticity without a yield surface. Arch. Mech. Stos. 23, 515–553 (1971)

    MathSciNet  Google Scholar 

  24. Gaul, L., Lenz, J., Sachau, D.: Active damping of space structures by contact pressure control in joints. J. Struct. Mech. 26, 81–100 (1998). https://doi.org/10.1080/08905459808945421

    Article  Google Scholar 

  25. De Wit, C.C., Olsson, H., Astrom, K.J., et al.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dahl, P.R.: Solid friction damping of mechanical vibrations. AIAA J. 14(12), 1675–1682 (1976)

    Article  Google Scholar 

  27. Jenkins, G.M.: Analysis of the stress–strain relationships in reactor grade graphite. Br. J. Appl. Phys. 13, 30–32 (1962)

    Article  Google Scholar 

  28. Li, Y., Hao, Z.: A six-parameter Iwan model and its application. Mech. Syst. Signal Process. 68, 354–365 (2016)

    Article  Google Scholar 

  29. Brake, M.R.W.: A reduced Iwan model that includes pinning for bolted joint mechanics. Nonlinear Dyn. 87(2), 1335–1349 (2017)

    Article  Google Scholar 

  30. Biswas, S., Chatterjee, A.: A two-state hysteresis model for bolted joints, with minor loops from partial unloading. Int. J. Mech. Sci. 140, 506–520 (2018)

    Article  Google Scholar 

  31. Wang, D., Xu, C., Fan, X., Wan, Q.: Reduced-order modeling approach for frictional stick-slip behaviors of joint interface. Mech. Syst. Signal Process. 103, 131–138 (2018)

    Article  Google Scholar 

  32. Li, D., Xu, C., Liu, T., Gola, M.M., Wen, L.: A modified IWAN model for microslip in the context of dampers for turbine blade dynamics. Mech. Syst. Signal Process. 121, 14–30 (2019)

    Article  Google Scholar 

  33. Li, D., Botto, D., Xu, C., et al.: A micro-slip friction modeling approach and its application in underplatform damper kinematics. Int. J. Mech. Sci. 161, 105029 (2019)

    Article  Google Scholar 

  34. Marshall, M.B., Lewis, R., Dwyer-Joyce, R.S.: Characterization of contact pressure distribution in bolted joints. Strain 42, 31–43 (2006)

    Article  Google Scholar 

  35. Mantelli, M., Milanez, F.H., Pereira, E., et al.: Statistical model for pressure distribution of bolted joints. J. Thermophys. Heat Transf. 24, 432–437 (2010)

    Article  Google Scholar 

  36. Segalman, D.J., Starr, M.J.: Inversion of Masing models via continuous Iwan systems. Int. J. Non-Linear Mech. 43, 74–80 (2008)

    Article  Google Scholar 

  37. Eriten, M., Polycarpou, A.A., Bergman, L.A.: Development of a lap joint fretting apparatus. Exp. Mech. 51(8), 1405–1419 (2011)

    Article  Google Scholar 

  38. Eriten, M.: Multiscale physics-based modeling of friction. Doctoral dissertation, University of Illinois at Urbana-Champaign. (2012)

  39. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Süß, D.: Multi-harmonische-balance-methoden zur untersuchung des übertragungsverhaltens von strukturen mit fügestellen. Ph.D. thesis, Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, (2016)

  41. Sanliturk, K.Y., Ewins, D.J.: Modelling two-dimensional friction contact and its application using harmonic balance method. J. Sound Vib. 193, 511–523 (1996)

    Article  MATH  Google Scholar 

  42. Wu, Y.G., Li, L., Fan, Y., et al.: Design of semi-active dry friction dampers for steady-state vibration: sensitivity analysis and experimental studies. J. Sound Vib. 459, 114850 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by China Science Challenge Project (TZ2018007). Dongwu Li acknowledges the support provided by the China Scholarship Council (CSC) during a visit to the AERMEC lab of Politecnico di Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Contact parameters and imposed displacements in the quasi-static tests

See Table 1.

Table 1 Maximum imposed displacements and contact parameters (friction coefficient and contact stiffness) for different preload levels

Appendix B: Model parameters of the bolted joint oscillator

See Table 2.

Table 2 Model parameters of the bolted joint oscillator

Appendix C: Nonlinear dynamic response simulation

The MHBM is used to approximate dynamic response through Fourier series. Taking the displacement response, as an example, the real solution can be expanded into a series of harmonic components,

$$ \varvec{u} = \varvec{U}_{\varvec{o}} + \sum_{j = 1}^{{n_{h} }} \left[ {\varvec{U}_{\varvec{j}}^{\varvec{c}} \cos \left( {j\omega t} \right) + \varvec{U}_{\varvec{j}}^{\varvec{s}} \sin \left( {j\omega t} \right)} \right], $$
(C1)

where \( \varvec{U}_{\varvec{j}}^{\varvec{c}} \) and \( \varvec{U}_{\varvec{j}}^{\varvec{s}} \) are the sinusoidal and cosinoidal harmonic coefficients, \( \varvec{U}_{\varvec{o}} \) the constant component of displacement individually, \( j \) the order of Fourier series, \( n_{h} \) the truncated order of harmonics and \( \omega \) the principal vibration frequency. Similarly, the vectors of nonlinear force and excitation force can also be approximated in the same way,

$$ \varvec{F}_{\varvec{e}} = \varvec{F}_{\varvec{o}} + \sum_{j = 1}^{{n_{h} }} \left[ {\varvec{F}_{\varvec{j}}^{\varvec{c}} \cos \left( {j\omega t} \right) + \varvec{F}_{\varvec{j}}^{\varvec{s}} \sin \left( {j\omega t} \right)} \right], $$
(C2)
$$ \varvec{f}_{{\varvec{nl}}} = \varvec{f}_{\varvec{o}} + \sum_{j = 1}^{{n_{h} }} \left[ {\varvec{f}_{\varvec{j}}^{\varvec{c}} \cos \left( {j\omega t} \right) + \varvec{f}_{\varvec{j}}^{\varvec{s}} \sin \left( {j\omega t} \right)} \right]. $$
(C3)

The vibration differential equation, Eq. (15), can be transformed to an algebraic form,

$$ \varvec{Z}\left(\varvec{\omega}\right)\varvec{u} = \varvec{F}_{\varvec{e}} - \varvec{f}_{{\varvec{nl}}} , $$
(C4)

where \( Z\left( \omega \right) \) is the dynamic stiffness matrix which represents the linear part of the system and can be defined as,

$$ \varvec{Z}\left(\varvec{\omega}\right) = {\mathbf{diag}}\left( {\varvec{K},\varvec{Z}_{1} , \ldots ,\varvec{Z}_{\varvec{j}} , \ldots ,\varvec{Z}_{{\varvec{n}_{\varvec{h}} }} } \right), $$
(C5)

where the \( \varvec{Z}_{\varvec{j}} \varvec{ }(j = 1, 2, \ldots ,n_{h} ) \) is defined as

$$ \varvec{Z}_{\varvec{j}} = \left[ {\begin{array}{*{20}c} { - \left( {\varvec{j\omega }} \right)^{2} \varvec{M} + \varvec{K}} & {\varvec{j\omega C}} \\ { - \varvec{j\omega C}} & { - \left( {\varvec{j\omega }} \right)^{2} \varvec{M} + \varvec{K}} \\ \end{array} } \right]. $$
(C6)

Equation (C6) is usually rewritten as a residual form,

$$ \varvec{R} = \varvec{Z}\left(\varvec{\omega}\right)\varvec{u} - \varvec{F}_{\varvec{e}} + \varvec{f}_{{\varvec{nl}}} , $$
(C7)

where \( \varvec{R} \) is the residual. The residual equation is solved iteratively using a Newton–Raphson method for the steady response amplitude,

$$ \varvec{u}^{{\left( {\varvec{j} + 1} \right)}} = \varvec{u}^{{\left( \varvec{j} \right)}} - \left( {\left. {\frac{{\partial \varvec{R}}}{{\partial \varvec{u}}}} \right|_{{\varvec{u}^{{\left( \varvec{j} \right)}} }} } \right)^{ - 1} \varvec{R}\left( {\varvec{u}^{{\left( \varvec{j} \right)}} } \right), $$
(C8)

where \( \frac{{\partial \varvec{R}}}{{\partial \varvec{u}}} = \varvec{Z}\left(\varvec{\omega}\right) + \frac{{\partial \varvec{f}_{{\varvec{nl}}} }}{{\partial \varvec{u}}} \) is the Jacobian matrix of the system.

Due to the dependent of friction force on relative displacement and velocity of contact interface and its hysteresis characteristics, it is hard to be obtained in frequency domain. Therefore, the AFT method is used to implement the mutual transformation of response signals between time and frequency domains.

After the initial response \( \varvec{u}\left( \varvec{t} \right) \) in time domain is obtained, the friction force \( \varvec{f}_{{\varvec{nl}}} \left( \varvec{t} \right) \) can be calculated using the proposed model. Then the friction force in time domain is transformed into frequency domain using a Fast Fourier Transform. Substituting the friction force, \( \varvec{f}_{{\varvec{nl}}} \left(\varvec{\omega}\right) \), into Eq. (C4) and solving iteratively the algebraic equation to get a new steady solution, \( \varvec{u}(\varvec{\omega})^{{\left( {\varvec{i} + 1} \right)}} \), the updated time domain solution, \( \varvec{u}(\varvec{t})^{{\left( {\varvec{i} + 1} \right)}} \), can be obtained by an inverse Fast Fourier Transform. Subsequently, the friction force is updated according to new response. An iterative process is performed until the solution is convergent. That is, the residual \( \varvec{R} \) is smaller than a given tolerance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Xu, C., Kang, J. et al. Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures. Nonlinear Dyn 101, 255–269 (2020). https://doi.org/10.1007/s11071-020-05765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05765-6

Keywords

Navigation