Property and evolution of the running-in attractor in an actual dynamic system

Abstract

Aiming to discuss the dynamic property and evolution of the running-in attractor in an actual dynamic system, the pin-on-disk experiments were conducted at different normal loads. The friction coefficient was extracted and taken as the research object. The phase trajectory was utilized to describe the running-in attractor formation. The correlation dimension (D) and the moving cut data-approximate entropy (MC-ApEn) were employed to explore the property and evolution of the running-in attractor. The results showed that the running-in attractor in the friction system has the nature of sensitivity to initial values, self-similarity and complexity. These properties have a direct strong correlation with the normal load. This study reveals the chaotic nature of an actual dynamic system. And it is conductive to reveal the tribological mechanism in perspective of nonlinear dynamics and guide active design of tribology, so as to improve the service performance and economic benefits for mechanical equipment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Chirikov, B.: Linear and nonlinear dynamical chaos. Open. Syst. Inf. Dyn. 4, 241–280 (1997)

    Article  Google Scholar 

  2. 2.

    Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Grebogi, C., Edward, O., James, Y.A.: Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238(4827), 632–638 (1987)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430(29), 525–528 (2004)

    Article  Google Scholar 

  5. 5.

    Oberst, S., Lai, J.C.S.: Nonlinear transient and chaotic interactions in disc brake squeal. J. Sound Vib. 342, 272–289 (2015)

    Article  Google Scholar 

  6. 6.

    Jiang, Y., Zhu, H., Li, Z., Peng, Z.: The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dyn. 84(1), 203–222 (2016)

    Article  Google Scholar 

  7. 7.

    Zhou, Y.K., Zhu, H., Zuo, X.: Dynamics evolutionary consistency between friction force and friction temperature from the perspective of morphology and structure of phase trajectory. Tribol. Int. 94, 606–615 (2016)

    Article  Google Scholar 

  8. 8.

    Zhu, H., Ge, S.R., Li, G., Lv, L.: Test of running-in process and preliminary analysis of running-in attractors. Lubr. Eng. 32(1), 1–3 (2007)

    Google Scholar 

  9. 9.

    Zhu, H., Ge, S.R., Lv, L., Lu, B.B.: Evolvement rule of running-in attractor. Chin. J. Mech. Eng. 44(3), 99–104 (2008)

    Article  Google Scholar 

  10. 10.

    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 9(1–2), 189–208 (1983)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Grassberger, P.: Generalized dimensions of strange attractor. Phys. Lett. A 97(6), 227–230 (1983)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Kuznetsov, N.V., Alexeeva, T.A., Leonov, G.A.: Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations. Nonlinear Dyn. 85(1), 195–201 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl. Akad. Nauk. SSSR 119, 861–864 (1958)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Ding, C., Zhu, H., Sun, G.D., Zhou, Y.K., Zuo, X.: Chaotic characteristics and attractor evolution of friction noise during friction process. Friction 6(1), 47–61 (2018)

    Article  Google Scholar 

  15. 15.

    Ding, C., Zhu, H., Sun, G.D., Jiang, Y., Wei, C.L.: Dynamic states recognition of friction noise in the wear process based on moving cut data-approximate entropy. J. Tribol. Trans. ASME 140(5), 051604 (2018)

    Article  Google Scholar 

  16. 16.

    Ding, C., Zhu, H., Sun, G.D., Jiang, Y., Wei, C.L.: Characteristic parameters and evolution of the running-in attractor. Int. J. Bifurc. Chaos 29(4), 1950044 (2019)

    Article  Google Scholar 

  17. 17.

    Sun, G.D., Zhu, H.: Characteristic parameter extraction of running-in attractors based on phase trajectory and grey relation analysis. Nonlinear Dyn. 95, 3115–3126 (2019)

    Article  Google Scholar 

  18. 18.

    Zhou, Y.K., Zhu, H., Zuo, X.: System dependence of running-in attractor derived from lubricated sliding contact of steel alloys 52100 and 1045. J. Tribol. Trans. ASME 40(5), 51601 (2018)

    Article  Google Scholar 

  19. 19.

    Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. System 4(37), 1–18 (2016)

    Google Scholar 

  20. 20.

    Rosenstein, M.T., Collins, J.J., Deluca, C.J.: Reconstruction expansion as a geometry-based framework for choosing proper delay times. Phys. D Nonlinear Phenom. 73(1–2), 82–98 (1994)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometrical reconstruction. Phys. Rev. 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  22. 22.

    Abdi, H., Williams, L.J.: Principal component analysis. Wire Comput. Stat. 2(4), 107–111 (2010)

    Google Scholar 

  23. 23.

    Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 5(50), 346–349 (1983)

    MathSciNet  Article  Google Scholar 

  24. 24.

    He, W.P., He, T., Cheng, H.Y., Zhang, W., Wu, Q.: A new method to detect abrupt change based on approximate entropy. Acta Phys. Sin. 4(60), 1–9 (2011)

    Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 51775546, 51675483), Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-A2019008) and Foundations (Grant No. 61409230606).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cong Ding.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, C. Property and evolution of the running-in attractor in an actual dynamic system. Nonlinear Dyn 102, 1019–1031 (2020). https://doi.org/10.1007/s11071-020-05696-2

Download citation

Keywords

  • Running-in attractor
  • Friction system
  • Sensitivity to initial value
  • Self-similarity
  • Complexity