Chaos, border collisions and stylized empirical facts in an asset pricing model with heterogeneous agents

Abstract

An asset pricing model with chartists, fundamentalists and trend followers is considered. A market maker adjusts the asset price in the direction of the excess demand at the end of each trading session. An exogenously given fundamental price discriminates between a bull market and a bear market. The buying and selling orders of traders change moving from a bull market to a bear market. Their asymmetric propensity to trade leads to a discontinuity in the model, with its deterministic skeleton given by a two-dimensional piecewise linear dynamical system in discrete time. Multiple attractors, such as a stable fixed point and one or more attracting cycles or cycles and chaotic attractors, appear through border collision bifurcations. The multi-stability regions are underlined by means of two-dimensional bifurcation diagrams, where the border collision bifurcation curves are detected in analytic form at least for basic cycles with symbolic sequences \({\hbox {LR}}^{n}\) and \({\hbox {RL}}^{n}\). A statistical analysis of the simulated time series of the asset returns, generated by perturbing the deterministic dynamics with a random walk process, indicates that this is one of the simplest asset pricing models which are able to replicate stylized empirical facts, such as excess volatility, fat tails and volatility clustering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    An alternative modeling choice is represented by assuming that this type of trader adopts with probability one-half the trading strategy employed in the bull market and with probability one-half the trading strategy employed in the bear market every time the market price coincides with the fundamental price, i.e., he adopts the trend following strategy using an extrapolation rate which is the average of the extrapolation rates used in the bear and the bull markets. This alternative modeling choice would impact the dynamics of the deterministic skeleton of the model only in a zero-measure subset of the state space as discussed in the next section.

References

  1. 1.

    Anufriev, M., Tuinstra, J.: The impact of short-selling constraints on financial market stability in a heterogeneous agents model. J. Econ. Dyn. Control 37(8), 1523–1543 (2013)

    MATH  Google Scholar 

  2. 2.

    Avrutin, V., Schanz, M., Banerjee, S.: Multi-parametric bifurcations in a piecewise-linear discontinuous map. Nonlinearity 19(8), 1875–1906 (2006)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Avrutin, V., Zhusubaliyev, Z., Saha, A., Banerjee, S., Sushko, I., Gardini, L.: Dangerous bifurcations revisited. Int. J. Bifurc. Chaos 26(14), 1630040 (2016)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Avrutin, V., Gardini, L., Sushko, I., Tramontana, F.: Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps. World Scientific Series on Nonlinear Science A, vol. 95. World Scientific, Singapore (2019)

    Google Scholar 

  5. 5.

    Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Phys. Rev. Lett. 80(14), 3049–3052 (1998)

    MATH  Google Scholar 

  6. 6.

    Beja, A., Goldman, M.B.: On the dynamic behavior of prices in disequilibrium. J. Finance 35(2), 235–248 (1980)

    Google Scholar 

  7. 7.

    Blaurock, I., Schmitt, N., Westerhoff, F.: Market entry waves and volatility outbursts in stock markets. J. Econ. Behav. Organ. 153, 19–37 (2018)

    Google Scholar 

  8. 8.

    Boswijk, H.P., Hommes, C.H., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31(6), 1938–1970 (2007)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Brianzoni, S., Campisi, G.: Dynamical analysis of a financial market with fundamentalists, chartists, and imitators. Chaos Solitons Fractals 130(109), 434 (2020)

    MathSciNet  Google Scholar 

  10. 10.

    Brock, W.A., Hommes, C.H.: Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22, 1235–1274 (1998)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Chiarella, C., Dieci, R., He, X.Z.: Handbook of Financial Markets: Dynamics and Evolution, North-Holland, chap Chapter 5 - Heterogeneity, Market Mechanisms, and Asset Price Dynamics, pp. 277–344 (2009)

  12. 12.

    Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Financ. 1(2), 223–236 (2001)

    MATH  Google Scholar 

  13. 13.

    Day, R.H., Huang, W.: Bulls, bears and market sheep. J. Econ. Behav. Organ. 14(3), 299–329 (1990)

    Google Scholar 

  14. 14.

    Dercole, F., Radi, D.: Does the “uptick rule” stabilize the stock market? insights from adaptive rational equilibrium dynamics. Chaos Solitons Fractals 130(109), 426 (2020)

    MathSciNet  Google Scholar 

  15. 15.

    di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Applied Mathematical Sciences, vol. 163. Springer, London (2008)

    Google Scholar 

  16. 16.

    Dieci, R., Schmitt, N., Westerhoff, F.: Steady states, stability and bifurcations in multi-asset market models. Decis. Econ. Financ. 41(2), 357–378 (2018)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Do, Y., Kim, S., Kim, P.: Stability of fixed points placed on the border in the piecewise linear systems. Chaos Solitons Fractals 38(2), 391–399 (2008)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Dutta, P.S., Banerjee, S.: Period increment cascades in a discontinuous map with square-root singularity. Discret. Contin. Dyn. Syst. Ser. B 14(3), 961–976 (2010)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Dutta, P.S., Routroy, B., Banerjee, S., Alam, S.S.: On the existence of low-period orbits in n-dimensional piecewise linear discontinuous maps. Nonlinear Dyn. 53(4), 369–380 (2008)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Farmer, J.D., Joshi, S.: The price dynamics of common trading strategies. J. Econ. Behav. Organ. 49(2), 149–171 (2002)

    Google Scholar 

  21. 21.

    Garcia-Morato, L.B., Macias, E., nez, E.N., Peral, F.: Bifurcation patterns in homogeneous area-preserving piecewise-linear maps. Qual. Theory Dyn. Syst. 18(2), 547–582 (2019)

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Gardini, L., Tramontana, F., Avrutin, V., Schanz, M.: Border collision bifurcations in \(1d\)\(pwl\) map and Leonov’s approach. Int. J. Bifurc. Chaos 20(10), 3085–3104 (2010)

    MATH  Google Scholar 

  23. 23.

    Gaunersdorfer, A., Hommes, C.H., OOWagener, F.: Bifurcation routes to volatility clustering under evolutionary learning. J. Econ. Behav. Organ. 67(1), 27–47 (2008)

    Google Scholar 

  24. 24.

    Gu, E.G.: Bifurcations and chaos for 2D discontinuous dynamical model of financial markets. Int. J. Bifurc. Chaos 27(12), 1750185 (2017)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Gu, E.G.: On the existence of chaos in a discontinuous area-preserving map arising in financial markets. Int. J. Bifurc. Chaos 28(14), 1850177 (2018)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    He, X.Z., Li, Y.: Heterogeneity, convergence, and autocorrelations. Quant. Financ. 8(1), 59–79 (2008)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. (New Series) Am. Math. Soc. 40(4), 479–519 (2003)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Hommes, C., Veld, D.: Booms, busts and behavioural heterogeneity in stock prices. J. Econ. Dyn. Control 80, 101–124 (2017)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Kollár, L.E., Stépán, G., Turi, J.: Dynamics of piecewise linear discontinuous maps. Int. J. Bifurc. Chaos 14(7), 2341–2351 (2004)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Lu, S., Oberst, S., Zhang, G., Luo, Z.: Bifurcation analysis of dynamic pricing processes with nonlinear external reference effects. Commun. Nonlinear Sci. Numer. Simul. 79(104), 929 (2019)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Lux, T.: The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions. J. Econ. Behav. Organ. 33(2), 143–165 (1998)

    Google Scholar 

  32. 32.

    Lux, T., Ausloos, M.: The Science of Disasters. Market Fluctuations I: Scaling, Multiscaling, and Their Possible Origins, pp. 372–409. Springer, New York (2002)

    Google Scholar 

  33. 33.

    Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397, 498–500 (1999)

    Google Scholar 

  34. 34.

    Mira, C.: Global Analysis of Dynamic Models for Economics, Finance and Social Sciences. Embedding of a Dim1 Piecewise Continuous and Linear Leonov Map into a Dim2 Invertible Map, pp. 337–368. Springer, New York (2013)

    Google Scholar 

  35. 35.

    Mira, C., Gardini, L., Barugola, A., Cathala, J.C.: Chaotic Dynamics in Two-dimensional Noninvertible Maps. World Scientific Series on Nonlinear Science A, vol. 20. World Scientific, Singapore (1996)

    Google Scholar 

  36. 36.

    Nusse, H.E., Yorke, J.A.: Border-collision bifurcations including ”period two to period three” for piecewise smooth systems. Phys. D 57(1–2), 39–57 (1992)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Nusse, H.E., Yorke, J.A.: Border-collision bifurcations for piecewise smooth one-dimensional maps. Int. J. Bifurc. Chaos Appl. Sci. Eng. 5(1), 189–207 (1995)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Rakshit, B., Apratim, M., Banerjee, S.: Bifurcation phenomena in two-dimensional piecewise smooth discontinuous maps. Chaos Interdiscip. J. Nonlinear Sci. 20, 033101 (2010)

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Schmitt, N.: Heterogeneous expectations and asset price dynamics, Bamberg Economic Research Group (BERG) Working Paper Series, No. 134 (2018)

  40. 40.

    Simpson, D.: Bifurcations in Piecewise-Smooth Continuous Systems. World Scientific, Singapore (2010)

    Google Scholar 

  41. 41.

    Simpson, D.: Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form. Int. J. Bifurc. Chaos 24(6), 1430018 (2014)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Simpson, D.: The stability of fixed points on switching manifolds of piecewise-smooth continuous maps. arXiv:1612.02932v1 (2016)

  43. 43.

    Simpson, D.: Unfolding codimension-two subsumed homoclinic connections in two-dimensional piecewise-linear maps. arXiv:1907.02653v1 (2019)

  44. 44.

    Simpson, D., Tuffley, C.: Subsumed homoclinic connections and infinitely many coexisting attractors in piecewise-linear continuous maps. Int. J. Bifurc. Chaos 27(2), 1730010 (2017)

    MATH  Google Scholar 

  45. 45.

    Sushko, I., Gardini, L.: Center bifurcation for two-dimensional border collision normal form. Int. J. Bifurc. Chaos 18(4), 1029–1050 (2008)

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Sushko, I., Gardini, L.: Degenerate bifurcations and border collisions in piecewise smooth 1d and 2d maps. Int. J. Bifurc. Chaos 20(7), 2045–2070 (2010)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Tramontana, F., Westerhoff, F., Gardini, L.: On the complicated price dynamics of a simple one-dimensional discontinuous financial market model with heterogeneous interacting traders. J. Econ. Behav. Organ. 74(3), 187–205 (2010)

    Google Scholar 

  48. 48.

    Tramontana, F., Gardini, L., Westerhoff, F.: A simple financial market model with chartists and fundamentalists: market entry levels and discontinuities. Math. Comput. Simul. 108, 16–40 (2015)

    MathSciNet  Google Scholar 

  49. 49.

    Veld, D.: Adverse effects of leverage and short-selling constraints in a financial market model with heterogeneous agents. J. Econ. Dyn. Control 69, 45–67 (2016)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Zhusubaliyev, Z., Mosekilde, E.: Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific Series on Nonlinear Science A, vol. 44. World Scientific, Singapore (2003)

    Google Scholar 

Download references

Acknowledgements

Work developed in the framework of the research project on Models of behavioral economics for sustainable development of the Department of Economics, Society, Politics (DESP), University of Urbino. Davide Radi acknowledges the support of the Czech Science Foundation (GACR) under project [20-16701S] and VSB-TU Ostrava under the SGS project SP2020/11.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail Anufriev.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anufriev, M., Gardini, L. & Radi, D. Chaos, border collisions and stylized empirical facts in an asset pricing model with heterogeneous agents. Nonlinear Dyn 102, 993–1017 (2020). https://doi.org/10.1007/s11071-020-05689-1

Download citation

Keywords

  • Piecewise linear asset pricing model
  • Heterogeneous traders
  • Chaos and border collision bifurcations
  • Stylized empirical facts of asset returns