Skip to main content
Log in

Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells (FL) system. First, the corresponding Lax pair and the generalized (nM)-fold Darboux transformation are constructed. Second, the first- and second-order mixed localized solutions of the three-component FL system are given and their dynamic features are investigated. These results further reveal the interesting dynamic behaviors of the higher-order mixed localized solutions in the multi-component coupled FL system. At last, the corresponding modulation instability is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fokas, A.S.: On a class of physically important integrable equations. Physica D 87, 145–150 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Lenells, J., Fokas, A.S.: On a novel integrable generalization of the nonlinear Schrodinger equation. Nonlinearity 22, 11–27 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Triki, H., Wazwaz, A.M.: Combined optical solitary waves of the Fokas–Lenells equation. Wave Random Complex 27, 587–593 (2017)

    MathSciNet  Google Scholar 

  4. Matsuno, Y.: A direct method of solution for the Fokas–Lenells derivative nonlinear Schrödinger equation: II. Dark soliton solutions. J. Phys. A Math. Theor. 45, 475202 (2012)

    MATH  Google Scholar 

  5. Xu, J., Fan, G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Triki, H., Wazwaz, A.M.: New types of chirped soliton solutions for the Fokas–Lenells equation. Int. J. Numer. Method Heat 27, 00–00 (2017)

    Google Scholar 

  7. Xu, S.W., He, J.S., Cheng, Y., Porseizan, K.: The n-order rogue waves of Fokas–Lenells equation. Math. Method Appl. Sci. 38, 1106–1126 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, Y., Yang, J.W., Chow, K.W., Wu, F.: Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation. Nonlinear Anal. Real 33, 237–252 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Ahmed, I., Seadawy, A.R., Lu, D.C.: M-shaped rational solitons and their interaction with kink waves in the Fokas–Lenells equation. Phys. Scr. 94, 5:055205 (2019)

    Google Scholar 

  10. Kundu, A.: Two-fold integrable hierarchy of nonholonomic deformation of the derivative nonlinear Schrödinger and the Lenells–Fokas equation. J. Math. Phys. 51, 022901 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Ling, L.M., Feng, B.F., Zhu, Z.N.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real 40, 185–214 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Wang, X., Wei, J., Wang, L.: Baseband modulation instability, rogue waves and state transitions in a deformed Fokas–Lenells equation. Nonliear Dyn. 97, 343–353 (2019)

    Google Scholar 

  13. Xu, T., Chen, Y.: Semirational solutions to the coupled Fokas–Lenells equations. Nonliear Dyn. 45, 918–941 (2019)

    Google Scholar 

  14. Lambert, F., Willox, R.: On the balance between dispersion and nonlinearity for a class of bilinear equations. J. Phys. Soc. Jpn. 58, 1860–1861 (2007)

    MathSciNet  Google Scholar 

  15. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1058 (2007)

    Google Scholar 

  16. Ablowitz, M.J., Horikis, T.P.: Interacting nonlinear wave envelopes and rogue wave formation in deep water. Phys. Fluids 27, 012107 (2015)

    MATH  Google Scholar 

  17. Akhmediev, N.N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrodinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Terng, C.L., Uhlenbeck, K.: Bücklund transformations and loop group actions. Commun. Pure Appl. Math. 53, 1–75 (2000)

    MATH  Google Scholar 

  20. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  21. Ling, L.M., Zhao, L.C., Guo, B.L.: Darboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equations. Commun. Nonlinear Sci. 32, 285–304 (2016)

    MathSciNet  Google Scholar 

  22. Wen, X.Y., Yan, Z.Y., Yang, Y.Q.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time-symmetric potential. Chaos 26, 063123 (2016)

    MathSciNet  Google Scholar 

  23. Wang, X., Li, Y.Q., Chen, Y.: Generalized Darboux transformation and localized waves in coupled Hirota equations. Wave Motion 51, 1149–1160 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Wen, X.Y., Yan, Y.: Higher-order rational solitons and rogue-like wave solutions of the (2 + 1)-dimensional nonlinear fluid mechanics equations. Commun. Nonlinear Sci. 43, 311–329 (2017)

    MathSciNet  Google Scholar 

  25. Abrarov, R.M., Christiansen, P.L., Darmanyan, S.A., Scott, A.C., Soerensen, M.P.: Soliton propagation in three coupled nonlinear Schrödinger equations. Phys. Lett. A 171, 298–302 (1992)

    MathSciNet  Google Scholar 

  26. Xia, T.C., Fan, E.G.: The multi-component generalized Kaup–Newell hierarchy and its multi-component integrable couplings system with two arbitrary functions. J. Math. Phys. 46, 043510 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Ling, L.M., Zhao, L.C., Guo, B.L.: Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations. Nonlinearity 28, 3243 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Chen, J.C., Chen, Y., Feng, B.F., Maruno, K.I.: Rational solutions to two- and one-dimensional multi-component Yajima–Oikawa systems. Phys. Lett. A 379, 1510–1519 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, H.Q., Wang, Y., Ma, W.X.: Binary Darboux transformation for the coupled Sasa–Satsuma equations. Chaos 27, 597 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Z., Tian, B., Liu, L., Sun, Y., Du, Z.: Lax pair, breather-to-soliton conversions, localized and periodic waves for a coupled higher-order nonlinear Schrödinger system in a birefringent optical fiber. Eur. Phys. J. Plus 134, 129 (2019)

    Google Scholar 

  31. Lou, S.Y.: Generalized dromion solutions of the (2 + 1)-dimensional KdV equation. J. Phys. A Math. Theor. 28, 7227–7232 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Hirota, R.: Nonlinear partial difference equations. IV. Bücklund transformation for the discrete-time Toda equation. J. Phys. Soc. Jpn. 45, 321–332 (1978)

    MATH  Google Scholar 

  33. Hua, Y.F., Guo, B.L., Ma, W.X., Lv, X.: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    MathSciNet  Google Scholar 

  34. Ma, W.X., Yong, X.L., Zhang, H.Q.: Diversity of interaction solutions to the (2 + 1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Yin, Y.H., Ma, W.X., Liu, J.G., Lv, X.: Diversity of exact solutions to a (3 + 1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

    MathSciNet  Google Scholar 

  36. Huang, Y.F., Guo, B.L., Ma, W.X., Lv, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Lett. 74, 184–198 (2019)

    MathSciNet  Google Scholar 

  37. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, New York (1991)

    MATH  Google Scholar 

  38. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformations in Integrable Systems: Theory and Their Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  39. Nimmo, J.J.C., Freeman, N.C.: The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. Math. Gen. 17, 1415–1424 (1984)

    MATH  Google Scholar 

  40. Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lv, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation. Nonliear Dyn. 89, 2233–2240 (2017)

    Google Scholar 

  41. Zhu, Q.Z., Xu, J., Fan, E.G.: The Riemann–Hilbert problem and long-time asymptotics for the Kundu–Eckhaus equation with decaying initial value. Appl. Math. Lett. 76, 81–89 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, X.E., Chen, Y.: Inverse scattering transformation for generalized nonlinear Schrodinger equation. Appl. Math. Lett. 98, 306–313 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, G.Q., Yan, Y.: Three-component nonlinear Schrödinger equations: modulational instability, Nth-order vector rational and semi-rational rogue waves, and dynamics. Commun. Nonlinear Sci. 62, 117–133 (2018)

    Google Scholar 

  44. Xu, T., Chen, Y.: Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrodinger equations. Nonliear Dyn. 92, 2133–2142 (2018)

    Google Scholar 

  45. Wang, X., Yang, B., Chen, Y., Yang, Q.: Higher-order localized waves in coupled nonlinear Schrödinger equations. Chin. Phys. Lett. 31, 090201 (2014)

    Google Scholar 

Download references

Acknowledgements

The first author would like to express her sincere thanks to Xu Tao for his valuable comments. The authors gratefully acknowledge the support of National Natural Science Foundation of China (Nos. 11675054, 11435005) and Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Project is supported by National Natural Science Foundation of China (Nos. 11675054, 11435005), Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Chen, Y. Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas–Lenells system. Nonlinear Dyn 98, 1781–1794 (2019). https://doi.org/10.1007/s11071-019-05285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05285-y

Keywords

Navigation