Skip to main content
Log in

Demand–supply dynamics in FMCG business: exploration of customers’ herd behavior

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nowadays, social interactions among customers play an increasingly important role in product demand. However, the existing literature mostly focusses on the social influence of other customers’ stated preference while disregarding the social influence of revealed preference. To bridge the gap, this paper incorporates the latter, referred to as herd behavior of customers, into a dynamic demand–supply system of fast moving consumer goods, whose sales to some extent depend on social interaction. Equilibrium points and their local stability are analyzed first. Then, we solve the optimal supply strategy and analyze the evolution characteristics of this demand–supply dynamics. Results indicate that there may be more than one equilibrium point in this system. Provider has two optimal supply policies if initial point is the indifference point, which separates state space if two steady states exist. In addition, the demand–supply evolution is periodic as the provider alternates between cultivating and exploiting the herd effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

(figures come from http://tech.ifeng.com/a/20181126/45235137_0.shtml)

Similar content being viewed by others

References

  1. El Ouardighi, F., Feichtinger, G., Grass, D., Hartl, R., Kort, P.M.: Autonomous and advertising-dependent ’word of mouth’ under costly dynamic pricing. Eur. J. Oper. Res. 251(3), 860–872 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Crapis, D., Ifrach, B., Maglaras, C., Scarsini, M.: Monopoly pricing in the presence of social learning. Manag. Sci. 63(11), 3586–3608 (2016)

    Google Scholar 

  3. Yuan, X., Hwarng, H.B.: Stability and chaos in demand-based pricing under social interactions. Eur. J. Oper. Res. 253(2), 472–488 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Viglia, G., Furlan, R., Ladron-de Guevara, A.: Please, talk about it! when hotel popularity boosts preferences. Int. J. Hosp. Manag. 42, 155–164 (2014)

    Google Scholar 

  5. Engström, P., Forsell, E.: Demand effects of consumers’ stated and revealed preferences. J. Econ. Behav. Organ. 150, 43–61 (2018)

    Google Scholar 

  6. Chen, Y.-F.: Herd behavior in purchasing books online. Comput. Hum. Behav. 24(5), 1977–1992 (2008)

    Google Scholar 

  7. Banerjee, A.V.: A simple model of herd behavior. Q. J. Econ. 107(3), 797–817 (1992)

    Google Scholar 

  8. Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 100(5), 992–1026 (1992)

    Google Scholar 

  9. Gutierrez, G.J., He, X.: Life-cycle channel coordination issues in launching an innovative durable product. Prod. Oper. Manag. 20(2), 268–279 (2011)

    Google Scholar 

  10. Van Ackere, A., Haxholdt, C., Larsen, E.R.: Dynamic capacity adjustments with reactive customers. Omega 41(4), 689–705 (2013)

    Google Scholar 

  11. Jiang, B., Yang, B.: Quality and pricing decisions in a market with consumer information sharing. Manag. Sci. (2018). https://doi.org/10.1287/mnsc.2017.2930

    Google Scholar 

  12. Yao, J., Ma, C., He, W.P.: Investor herding behaviour of chinese stock market. Int. Rev. Econ. Finance 29, 12–29 (2014)

    Google Scholar 

  13. Yang, X., Gao, M., Wu, Y., Jin, X.: Performance evaluation and herd behavior in a laboratory financial market. J. Behav. Exp. Econ. 75, 45–54 (2018)

    Google Scholar 

  14. Zhang, J., Liu, P.: Rational herding in microloan markets. Manag. Sci. 58(5), 892–912 (2012)

    Google Scholar 

  15. Veeraraghavan, S.K., Debo, L.G.: Herding in queues with waiting costs: rationality and regret. Manuf. Serv. Oper. Manag. 13(3), 329–346 (2011)

    Google Scholar 

  16. Liu, Y.: Word of mouth for movies: its dynamics and impact on box office revenue. J. Marketing 70(3), 74–89 (2006)

    Google Scholar 

  17. Duan, W., Gu, B., Whinston, A.B.: The dynamics of online word-of-mouth and product sales-an empirical investigation of the movie industry. J. Retail. 84(2), 233–242 (2008)

    Google Scholar 

  18. Ma, J., Wang, H.: Complexity analysis of dynamic noncooperative game models for closed-loop supply chain with product recovery. Appl. Math. Model. 38(12), 5562–5572 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Ma, J., Xie, L.: The comparison and complex analysis on dual-channel supply chain under different channel power structures and uncertain demand. Nonlinear Dyn. 83(3), 1379–1393 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Ma, J., Sun, L.: Complexity analysis about nonlinear mixed oligopolies game based on production cooperation. IEEE Trans. Control Syst. Technol. 26(4), 1532–1539 (2018)

    Google Scholar 

  21. Ma, J., Ren, H.: Influence of government regulation on the stability of dual-channel recycling model based on customer expectation. Nonlinear Dyn. 93(3), 1775–1790 (2018)

    MATH  Google Scholar 

  22. Chen, Y.C., Fang, S.-C., Wen, U.-P.: Pricing policies for substitutable products in a supply chain with internet and traditional channels. Eur. J. Oper. Res. 224(3), 542–551 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, S., Zhang, J.: Contract preference with stochastic cost learning in a two-period supply chain under asymmetric information. Int. J. Prod. Econ. 196, 226–247 (2018)

    Google Scholar 

  24. Popescu, I., Wu, Y.: Dynamic pricing strategies with reference effects. Oper. Res. 55(3), 413–429 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Wu, F., Ma, J.: The equilibrium, complexity analysis and control in epiphytic supply chain with product horizontal diversification. Nonlinear Dyn. 93(4), 2145–2158 (2018)

    Google Scholar 

  26. Ma, J., Lou, W., Tian, Y.: Bullwhip effect and complexity analysis in a multi-channel supply chain considering price game with discount sensitivity. Int. J. Prod. Res. 57(17), 5432–5452 (2019)

    Google Scholar 

  27. Guo, Z.: Complexity and implications on channel conflict under the uncertain impacts of online customer reviews. Nonlinear Dyn. 96(3), 1971–1987 (2019)

    Google Scholar 

  28. Medio, A., Lines, M.: Nonlinear Dynamics: A Primer. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  29. Guo, Z., Ma, J.: Dynamics and implications on a cooperative advertising model in the supply chain. Commun. Nonlinear Sci. Numer. Simul. 64, 198–212 (2018)

    MathSciNet  Google Scholar 

  30. Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188(1), 135–163 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Kiseleva, T.: Heterogeneous beliefs and climate catastrophes. Environ. Resour. Econ. 65(3), 599–622 (2016)

    Google Scholar 

  32. Moghayer, S.M., et al.: Bifurcations of indifference points in discrete time optimal control problems. Thela thesis (2012)

  33. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  34. González-Parra, P.A., Lee, S., Velazquez, L., Castillo-Chavez, C.: A note on the use of optimal control on a discrete time model of influenza dynamics. Math. Biosci. Eng. 8(8), 183–197 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Grass, D., Caulkins, J., Feichtinger, G., Tragler, G., Behrens, D.: Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption, and Terror. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for valuable comments and pertinent suggestions. This research was supported by the National Natural Science Foundation of China (No.71571131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhai Ma, Zhanbing Guo or Yalan Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Proposition 2

As \(\mu ' = 1 - \frac{{\Omega '(\Lambda )\phi (p) - \Omega (\Lambda )\phi '(p)h'(\Lambda )}}{{{\phi ^2}(p)}}\), for any equilibrium point \(({\Lambda ^*},{p^*};\mu )\) in a decreasing interval of \(f( \Lambda )\), \({\mathrm{P}}({\mathrm{1}}){\mathrm{= 1 + }}v(1 - \phi + \Omega ') - (1 - \phi + v + \Omega ' + (\mu - \Lambda )(1 - v)h'\phi ')=({\mathrm{1}} - v)[\phi ({p^*}) - \Omega '({\Lambda ^*}) - (\mu - {\Lambda ^*})h'({\Lambda ^*})\phi '({p^*})]=({\mathrm{1}} - v)\phi ({p^*})\mu ' < 0\) holds, so this equilibrium point is always unstable. For the equilibrium point in an increasing interval, \({\mathrm{P(1)}}>0\) and \({\mathrm{P}}( - {\mathrm{1}}){\mathrm{= 1 + }}v(1 - \phi + \Omega ') + (1 - \phi + \Omega ' + v + (\mu - \Lambda )(1 - v)h'\phi ')=(1 + v)(2 - \phi + \Omega ') + (\mu - \Lambda )(1 - v)h'\phi ' \ge (1 + v)(2 - \mu '\phi ({p^*})) > 0\) when \(\mu '({\Lambda ^{\mathrm{*}}})\phi ({p^{\mathrm{*}}}) < 2\). In addition, \(\det (J)<1\) always holds if \(\Omega '({\Lambda ^{\mathrm{*}}}) < \phi ({p^*})\), so Jury stability condition is satisfied and the equilibrium point is asymptotically stable. However, if \(\Omega '({\Lambda ^{\mathrm{*}}}) >\phi ({p^*})\), Jury stability condition will be violated due to \(\det (J)>1\) with the increase in v.

This is to say, when v crosses \({v^{\mathrm{0}}} = \frac{1}{{1 - \phi ({p^*}) + \Omega '({\Lambda ^*})}}\) from the left side, a pair of complex-conjugate eigenvalues crosses the unit circle [28]. As a consequence, the equilibrium point becomes unstable. \(\square \)

Proof of Proposition 3

For a given \({\chi _t} \), \(\frac{{\partial {\mathcal {H}}}}{{\partial {q_t}}} = w{\Lambda _t} - 2\alpha {q_t} + {\chi _t}\frac{{{{\mathrm{e}}^{w{\Lambda _t} + \alpha {q_t}}}\alpha ({\Lambda _t} - \mu )}}{{{{({{\mathrm{e}}^{w{\Lambda _t}}} + {{\mathrm{e}}^{\alpha {q_t}}})}^2}}} \). As \(\frac{{\partial {\mathcal {H}}}}{{\partial {q_t}}} >0\) when \({q_t}=0\) and \(\frac{{\partial {\mathcal {H}}}}{{\partial {q_t}}}<0\) when \({q_t} \rightarrow \infty \), so \(\frac{{\partial {\mathcal {H}}}}{{\partial {q_t}}} =0\) must have solution(s) in \({q_t} \in (0,\infty )\). The second-order derivative satisfies \(\frac{{{\partial ^2}{\mathcal {H}}}}{{{\partial }{q_t}^2}} = \frac{{{{\mathrm{e}}^{w{\Lambda _t} + \alpha {q_t}}}({{\mathrm{e}}^{w{\Lambda _t}}} - {{\mathrm{e}}^{\alpha {q_t}}})}}{{{{({{\mathrm{e}}^{w{\Lambda _t}}} + {{\mathrm{e}}^{\alpha {q_t}}})}^3}}} \)\({\alpha ^2}({\Lambda _t} - \mu ){\chi _t} - 2\alpha \). Any solution of \(\frac{{\partial {\mathcal {H}}}}{{\partial {q_t}}} =0\) also satisfies \(\frac{{{\partial ^2}\mathcal{H}}}{{\partial {q_t}^2}} = \alpha \frac{{{{\mathrm{e}}^{w{\Lambda _t}}} - {{\mathrm{e}}^{\alpha {q_t}}}}}{{{{\mathrm{e}}^{w{\Lambda _t}}} + {{\mathrm{e}}^{\alpha {q_t}}}}}( 2\alpha {q_t}-w{\Lambda _t}) - 2\alpha < 0\). Therefore, this solution must be a local maximum. If there are two local maximums, there must be a local minimum between them. This contradicts with \(\frac{{{\partial ^2}\mathcal{H}}}{{\partial {q_t}^2}} < 0\). So \(\frac{{\partial \mathcal{L}}}{{\partial {q_t}}} =0\) has a unique solution. Assume the unique solution of \(\frac{{\partial {\mathcal {H}}}}{{\partial {q_t}}} =0\) is \({{\hat{q}}_t}\). Then, if \({{\hat{q}}_t}\) satisfies \({{\hat{q}}_t}<w\Lambda _t\), \({{\hat{q}}_t}\) also is the unique solution of \(\frac{{\partial \mathcal{L}}}{{\partial {q_t}}} =0\) with \({\eta _t} =0\). If \({{\hat{q}}_t}>w\Lambda _t\), \(\frac{{\partial \mathcal{L}}}{{\partial {q_t}}} =0\) has a unique solution \({q_t} = \frac{{w{\Lambda _t}}}{\alpha }\) with \({\eta _t} = {\chi _t}\frac{{({\Lambda _t} - \mu )}}{4} - \frac{w}{\alpha }{\Lambda _t}\). What is more, Legendre–Clebsch condition is satisfied for the interior solution. \(\square \)

Appendix B

Step 1 Initialize decision variable \({q_t}\) and the slack variable \({\eta _t} =0\), \(t=1,2,\ldots ,T\),

Step 2 Solve state variable \({\Lambda _t}\) (\({\Lambda _t}\) and \({r_t}\)) in Eq. 8 (Eq. 7) forward in time,

Step 3 Solve adjoint variable \({\chi _t}\) (\({\chi _t}\) and \({\kappa _t}\)) via Eq. 10 (Eq. 12 and Eq. 13) backward in time, subject to transversality condition \({\chi _T}=0\) (\({\chi _T}=0\) and \({\kappa _T}=0\)),

Step 4 Solve decision variable \({q_t}\) via Proposition 3 (Proposition 4),

Step 5 Check convergence. If \(\left\| \mathbf{q - \mathbf q _{old}} \right\| > {10^{ - 4}}\), go to Step 2. Otherwise, stop and output \({q_t}\) and the corresponding profit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Guo, Z. & Hong, Y. Demand–supply dynamics in FMCG business: exploration of customers’ herd behavior. Nonlinear Dyn 98, 1669–1681 (2019). https://doi.org/10.1007/s11071-019-05278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05278-x

Keywords

Navigation