Advertisement

A novel dynamic model for the spiral bevel gear drive with elastic ring squeeze film dampers

  • Weitao Chen
  • Siyu ChenEmail author
  • Zehua Hu
  • Jinyuan Tang
  • Haonan Li
Original paper
  • 82 Downloads

Abstract

Elastic ring squeeze film dampers (ERSFDs) show superior performances in vibration and noise control in a rotor-bearing system. Currently, the industry of spiral bevel gears is also interested in introducing ERSFDs to improve their dynamic performances. This manuscript develops a new accurate mathematical model of ERSFDs based on the generalized Reynolds equation and proposes a semi-analytical method to calculate the elastic ring deformation of ERSFDs. Moreover, an innovative numerical strategy for calculating the oil-film pressure distribution is presented, and Simpson’s rule is utilized to calculate the oil-film force of ERSFDs. Then the dynamic model of a spiral bevel gear drive supported on ERSFDs is developed by coupling the motion equations of the gear system with the oil-film force, and the dynamic characteristics of the system are studied for the first time. The new mathematical model and oil-film pressure calculation method of ERSFDs proposed in this work can be well applied to the gear system, and the ERSFD has better performance than the classical squeeze film damper in suppressing the nonlinear characteristics of systems in the speed range of 7100–8100 rpm. Besides, the mathematical model and oil-film pressure calculation method of ERSFDs proposed in this paper can be extended to all rotating machinery.

Keywords

Spiral bevel gear drive Elastic ring squeeze film damper Dynamic characteristic Nonlinear oil-film force 

Latin Symbols

\(\beta \)

Attitude angle of the journal to the x-direction

\(\varDelta \theta \)

Angle of a subinterval in the circumferential direction, \(\varDelta \theta = 2\pi /160\left( {rad} \right) \)

\(\varDelta L\)

Width of a subinterval in the axial direction, \(\varDelta L = 40/40\left( {mm} \right) \)

\({\dot{X}}, {\dot{Y}}, {\dot{Z}}\)

Dimensionless horizontal, vertical and axial velocities

\({\dot{x}}, {\dot{y}}, {\dot{z}}\)

Horizontal, vertical and axial velocities

\(\mu \)

Oil dynamic viscosity

\(\tau \)

Dimensionless time, \(\tau = {\omega _n}t\)

\(\theta \)

Angular position

\(\varepsilon \)

Eccentricity ratio, \(\varepsilon = e/{c_1}\)

b

Center distance of elastic ring segment before and after deformation

e

Eccentricity of the journal

g

Acceleration of gravity

H

Dimensionless thickness of the fluid film

L

Width of ERSFD

\(m_e\)

Equivalent mass of the gear pair, \({m_e} = \frac{{{I_p}{I_g}}}{{{I_g}\lambda _p^2 + {I_p}\lambda _g^2}}\)

P

Dimensionless pressure distribution in the fluid film, \(P=p/{p_0}\)

p

Pressure distribution in the fluid film

r

Deformation of the elastic ring

\(R, R'\)

Radii of the elastic ring segment before and after deformation

XYZ

Dimensionless horizontal, vertical and axial coordinates

xyz

Horizontal, vertical and axial coordinates

\({{{\bar{\delta }}} _s}\)

Dimensionless static transmission error

\({{\bar{e}}_p}, {{\bar{e}}_g}\)

Dimensionless eccentricities of pinion and gear

\({\delta _0}\)

Mean static transmission error

\({\delta _d}\)

Dynamic transmission error

\({\delta _i}\)

Displacement of the ith boss

\({\delta _s}\)

Static transmission error

\({\lambda _{lz}}\left( {l = p,g} \right) \)

Directional rotation radii, \({\lambda _{lz}} = {x_{lm}}{n_{ly}} - {y_{lm}}\)

\({\varOmega _g}\)

Dimensionless circular frequency of the gear, \({\varOmega _g} = - \frac{{{N_p}}}{{{N_g}}}{\varOmega _p}\)

\({\omega _g}\)

Circular frequency of the gear, \({\omega _g} = - \frac{{{N_p}}}{{{N_g}}}{\omega _p}\)

\({\omega _n}\)

Natural frequency, \({\omega _n} = \sqrt{{k_m}/{m_e}} \)

\({\varOmega _p}\)

Dimensionless circular frequency of the pinion

\({\omega _p}\)

Circular frequency of the pinion, \({\omega _p} = \frac{{2\pi {n_p}}}{{60{\omega _n}}}\)

\({\theta _p}, {\theta _g}\)

Rotation angle of pinion and gear around z axis

\({\zeta _1}\)

Dimensionless parameter, \({\zeta _1} = \frac{{{c_e}}}{{{m_p}{\omega _n}}}\)

\({\zeta _2}\)

Dimensionless parameter, \({\zeta _2} = \frac{{{c_m}}}{{{m_p}{\omega _n}}}\)

\({\zeta _3}\)

Dimensionless parameter, \({\zeta _3} = \frac{{{c_a}}}{{{m_p}{\omega _n}}}\)

\({\zeta _4}\)

Dimensionless parameter, \({\zeta _4} = \frac{{{c_e}}}{{{m_g}{\omega _n}}}\)

\({\zeta _5}\)

Dimensionless parameter, \({\zeta _5} = \frac{{{c_m}}}{{{m_g}{\omega _n}}}\)

\({\zeta _6}\)

Dimensionless parameter, \({\zeta _6} = \frac{{{c_a}}}{{{m_g}{\omega _n}}}\)

\({\zeta _7}\)

Dimensionless parameter, \({\zeta _7} = \frac{{{c_m}}}{{{m_e}{\omega _n}}}\)

\({A_{i,j}}, {B_{i,j}}\)

Simplified coefficient for solving oil-film pressure

\({c_b}\)

Bearing damping coefficient

\({c_l}\left( {l = 1,2} \right) \)

Radial clearance of inner and outer oil-film

\({c_m}\)

Damping coefficient of the gear mesh

\({C_{i,j}}, {D_{i,j}}\)

Simplified coefficient for solving oil-film pressure

\({e_p}, {e_g}\)

Eccentricities of pinion and gear

\({f_0}\)

Dimensionless parameter

\({F_m}\)

Dynamic mesh force

\({F_{gx}}, {F_{gy}}\)

Components of the fluid film force in the horizontal and vertical directions for the gear

\({F_{i,j}}, {K_{i,j}}, {M_{i,j}}\)

Simplified coefficient for solving oil-film pressure

\({F_{px}}, {F_{py}}\)

Components of the fluid film force in the horizontal and vertical directions for the pinion

\({h_l}\left( {l = 1,2} \right) \)

Thickness of the inner and outer oil-film

\({I_p}, {I_g}\)

Moments of inertia of the pinion and gear

\({k_0}\)

Mean mesh stiffness

\({k_1}\)

Dimensionless parameter, \({k_1} = \frac{{{k_e}}}{{{m_p}\omega _n^2}}\)

\({k_2}\)

Dimensionless parameter, \({k_2} = \frac{{{k_m}}}{{{m_p}\omega _n^2}}\)

\({k_3}\)

Dimensionless parameter, \({k_3} = \frac{{{k_a}}}{{{m_p}\omega _n^2}}\)

\({k_4}\)

Dimensionless parameter, \({k_4} = \frac{{{k_e}}}{{{m_g}\omega _n^2}}\)

\({k_5}\)

Dimensionless parameter, \({k_5} = \frac{{{k_m}}}{{{m_g}\omega _n^2}}\)

\({k_6}\)

Dimensionless parameter, \({k_6} = \frac{{{k_a}}}{{{m_g}\omega _n^2}}\)

\({k_7}\)

Dimensionless parameter, \({k_7} = \frac{{{k_m}}}{{{m_e}\omega _n^2}}\)

\({k_a}, {c_a}\)

Stiffness and the damper of axial support

\({k_b}\)

Bearing stiffness

\({k_e}, {c_e}\)

Stiffness and the damper of elastic support

\({m_p}, {m_g}\)

Masses of the pinion and gear, respectively

\({n_b}\)

Elastic ring boss number

\({n_p}\)

Rotating speed of pinion (rpm)

\({N_p}, {N_g}\)

Tooth number of the pinion and gear

\({n_{gx}}, {n_{gy}}, {n_{gz}}\)

Normal vector of the mesh point for gear

\({n_{px}}, {n_{py}}, {n_{pz}}\)

Normal vector of the mesh point for pinion

\({O_b}, {O_j}\)

Geometric center of the housing and journal

\({p_0}\)

Dimensionless parameter, \({p_0} = 2\mu {R_1}/{c_1}\)

\({R_1}, {R_2}\)

Radii of wall-1, wall-2, respectively

\({R_3}, {R_4}\)

Radii of wall-3, wall-4, respectively

\({T_E}\)

External torque of the pinion

\({T_L}\)

Load torque of the gear, \(T_L={N_p}/{N_g} \times {T_E}\)

\({u_h}, {u_0}\)

Tangential velocities of oil-film at upper and lower boundaries

\({v_h}, {v_0}\)

Radial velocities of oil-film at upper and lower boundaries

\({w_h}, {w_0}\)

Axial velocities of oil-film at upper and lower boundaries

Notes

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC) through Grant Nos. 51535012, U1604255 and the support of the Key research and development project of Hunan province through Grant No. 2016JC2001. In addition, the authors would like to thank the anonymous reviewers for their valuable comments.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008).  https://doi.org/10.1016/j.jsv.2008.01.014 CrossRefGoogle Scholar
  2. 2.
    Kanki, H., Kaneko, Y., Kurosawa, M., Yamamoto, T.: Prevention of low-frequency vibration of high-capacity steam turbine units by squeeze-film damper. J. Eng. Gas Turbines Power 120(2), 391–396 (1998).  https://doi.org/10.1115/97-gt-011 CrossRefGoogle Scholar
  3. 3.
    Inayat-Hussain, J.I., Kanki, H., Mureithi, N.W.: On the bifurcations of a rigid rotor response in squeeze-film dampers. J. Fluids Struct. 17(3), 433–459 (2003).  https://doi.org/10.1016/S0889-9746(02)00146-9 CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhao, J.Y., Linnett, I.W., Mclean, L.J.: Subharmonic and quasi-periodic motions of an eccentric squeeze film damper-mounted rigid rotor. J. Vib. Acoust. 116(3), 357–363 (1994).  https://doi.org/10.1115/1.2930436 CrossRefGoogle Scholar
  5. 5.
    Wang, Z., Xu, N., Yu, X., Liu, Z., Zhang, G.: The dynamic characteristic analysis of elastic ring squeeze film damper by fluid-structure interaction approach. In: Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition, 2017, Vol 7a, (2017).  https://doi.org/10.1115/GT2017-63276
  6. 6.
    Han, Z., Ding, Q., Zhang, W.: Dynamical characteristic analysis of elastic ring squeeze film damper in rotor system. In: Cham 2019. Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM, pp. 56-71. Springer.  https://doi.org/10.1007/978-3-319-99262-4_5
  7. 7.
    Zhang, W., Ding, Q.: Elastic ring deformation and pedestal contact status analysis of elastic ring squeeze film damper. J. Sound Vib. 346, 314–327 (2015).  https://doi.org/10.1016/j.jsv.2015.02.015 CrossRefGoogle Scholar
  8. 8.
    Zhou, M., Li, Q.H., Yan, L.T.: Study on vibration damping mechanism of an elastic ring film damper (2): solution of oil film force characteristics of elastic ring squeeze film damper. Gas Turbine Exp. Res. 12(01), 30–33 (1999)Google Scholar
  9. 9.
    Zhou, M., Li, Q.H., Yan, L.T.: Study on vibration damping mechanism of an elastic ring film damper. J. Aerosp. Power 11(04), 19-23+33 (1998)Google Scholar
  10. 10.
    Cao, L., Gao, D.P., Jiang, F.J.: Investigation on critical speed characteristics of elastic ring SFD-rotor system. J. Propuls. Technol. 29(2), 235–239 (2008).  https://doi.org/10.1016/j.jsv.2008.01.014 Google Scholar
  11. 11.
    Cao, L., Gao, D.P., Jiang, F.J.: Damping mechanism of elastic ring squeeze film damper. J. Vib. Eng. 20(6), 584–588 (2007).  https://doi.org/10.3969/j.issn.1004-4523.2007.06.006 Google Scholar
  12. 12.
    Xu, Y., Chen, X., Zou, J., Qi, W., Li, Y.: Influence of orifice distribution on the characteristics of elastic ring-squeeze film dampers for flywheel energy-storage system. IEEE Trans. Plasma Sci. 41(5), 1272–1279 (2013).  https://doi.org/10.1109/eml.2012.6325126 CrossRefGoogle Scholar
  13. 13.
    Zhou, Y., Peng, S., Liu, X., Liu, S., Tang, J.: A novel method to generate the tooth surface model of face-milled generated spiral bevel gears. Int. J. Adv. Manuf. Technol. 102, 1–10 (2018).  https://doi.org/10.1007/s00170-018-2951-4 CrossRefGoogle Scholar
  14. 14.
    Zhou, Y., Chen, Z.C.: A new geometric meshing theory for a closed-form vector representation of the face-milled generated gear tooth surface and its curvature analysis. Mech. Mach. Theory 83, 91–108 (2015).  https://doi.org/10.1016/j.mechmachtheory.2014.09.002 CrossRefGoogle Scholar
  15. 15.
    Chen, H., Hou, L., Chen, Y., Yang, R.: Dynamic characteristics of flexible rotor with squeeze film damper excited by two frequencies. Nonlinear Dyn. 87(4), 2463–2481 (2017).  https://doi.org/10.1007/s11071-016-3204-4 CrossRefGoogle Scholar
  16. 16.
    Chang-Jian, C.W.: Bifurcation and chaos of gear-rotor bearing system lubricated with couple-stress fluid. Nonlinear Dyn. 79(1), 749–763 (2015).  https://doi.org/10.1007/s11071-014-1701-x CrossRefGoogle Scholar
  17. 17.
    Zhu, C.S., Robb, D.A., Ewins, D.J.: Analysis of the multiple-solution response of a flexible rotor supported on non-linear squeeze film dampers. J. Sound Vib. 252(3), 389–408 (2002).  https://doi.org/10.1006/jsvi.2001.3910 CrossRefGoogle Scholar
  18. 18.
    Chang-Jian, C.W.: Non-linear dynamic analysis of a HSFD mounted gear-bearing system. Nonlinear Dyn. 62(1–2), 333–347 (2010).  https://doi.org/10.1007/s11071-010-9720-8 CrossRefzbMATHGoogle Scholar
  19. 19.
    Sun, W., Yan, Z., Tan, T., Zhao, D., Luo, X.: Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-film temperature. Nonlinear Dyn. 92(3), 1119–1145 (2018).  https://doi.org/10.1007/s11071-018-4113-5 CrossRefGoogle Scholar
  20. 20.
    Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2883374 Google Scholar
  21. 21.
    Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2019.2895560 Google Scholar
  22. 22.
    Hua, X., Lim, T.C., Peng, T., Wali, W.E.: Dynamic analysis of spiral bevel geared rotor systems applying finite elements and enhanced lumped parameters. Int. J. Autom. Technol. 13(1), 97–107 (2012).  https://doi.org/10.1007/s12239-012-0009-4 CrossRefGoogle Scholar
  23. 23.
    Peng, T., Lim, T.C.: Influence of gyroscopic effect on hypoid and bevel geared system dynamics. Sae Int. J. Passeng. Cars Mech. Syst. 2(1), 1377–1386 (2009).  https://doi.org/10.4271/2009-01-2070 CrossRefGoogle Scholar
  24. 24.
    Peng, T., Lim, T.C.: Coupled multi-body dynamics and vibration simulation of hypoid geared rotor systems. In: 2008, pp. 1526–1537(1512).  https://doi.org/10.4271/2007-01-2228
  25. 25.
    Yan, H., Chen, S., Tang, J.: Rocking vibration and dynamic characteristics of a two-stage spur and bevel gear transmitting system. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(24), 4528–4547 (2017).  https://doi.org/10.1177/0954406216671839 CrossRefGoogle Scholar
  26. 26.
    Yavuz, S.D., Saribay, Z.B., Cigeroglu, E.: Nonlinear time-varying dynamic analysis of a spiral bevel geared system. Nonlinear Dyn. 92(4), 1901–1919 (2018).  https://doi.org/10.1007/s11071-018-4170-9 CrossRefGoogle Scholar
  27. 27.
    Li, M.: Non-linear dynamic behaviour of rotor-bearing system trained by bevel gears. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222(4), 617–627 (2008).  https://doi.org/10.1243/09544062jmes843 CrossRefGoogle Scholar
  28. 28.
    Inayat-Hussain, J.I.: Bifurcations of a flexible rotor response in squeeze-film dampers without centering springs. Chaos Solitons Fractals 24(2), 583–596 (2005).  https://doi.org/10.1016/j.chaos.2004.09.047 CrossRefzbMATHGoogle Scholar
  29. 29.
    Dowson, D.: A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4(2), 159–170 (1962).  https://doi.org/10.1016/0043-1648(63)90222-9 CrossRefGoogle Scholar
  30. 30.
    Han, Z., Ding, Q., Zhang, W.: Dynamical analysis of an elastic ring squeeze film damper-rotor system. Mech. Mach. Theory 131, 406–419 (2019).  https://doi.org/10.1016/j.mechmachtheory.2018.10.011 CrossRefGoogle Scholar
  31. 31.
    Gao, S., Xiong, X., Zhou, C., Wang, X.: Dynamic behavior of a rotor-bearing system with integral squeeze film damper and coupling misalignment. In: 2018 Prognostics and System Health Management Conference (PHM-Chongqing), pp. 1255–1262. IEEE. (2018).  https://doi.org/10.1109/PHM-Chongqing.2018.00220
  32. 32.
    Inayat-Hussain, J.I.: Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs. Chaos Solitons Fractals 39(2), 519–532 (2009).  https://doi.org/10.1016/j.chaos.2007.01.086 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Complex ManufacturingCentral South UniversityChangshaChina

Personalised recommendations