Advertisement

Nonlinear Dynamics

, Volume 96, Issue 4, pp 2535–2546 | Cite as

Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system

  • Zhong-Zhou LanEmail author
  • Jing-Jing SuEmail author
Original Paper

Abstract

Investigated in this paper is a non-autonomous generalized AB system, which is used to describe certain baroclinic instability processes in the geophysical flows. We discover that the two short waves and mean flow can evolve in the forms of the multi-rogue waves on the condition that the nonlinearity effect \(\sigma \) is positive. Via the Darboux and generalized Darboux transformations, we obtain the first- and second-order rogue waves as well as the algorithm to derive the Nth-order rogue waves. It is revealed that the perturbation function \(\delta (t)\) has no effect on the two short waves while affects the mean flow by changing its evolution background. When \(\sigma \) is negative, those rogue waves turn to be singular. In addition, we find that the two short waves and mean flow can also appear as the solitary waves, and they perform as the “bright” solitons under \(\sigma >0\) while perform as the “dark” solitons under \(\sigma <0\). With the Hirota method, introducing the auxiliary function \(\alpha (t)\), we derive the first- and second-order bright and dark solitary waves. Both solitary wave velocities are related to \(\delta (t)\) and \(\alpha (t)\). Besides, \(\delta (t)\) and \(\alpha (t)\) have no effect on the amplitudes of the two short waves but bring about controllable backgrounds and deformations of the solitary waves for the mean flow.

Keywords

Geophysical flows Non-autonomous generalized AB system Solitary and rogue waves Controllable backgrounds 

Notes

Acknowledgements

We express our sincere thanks to all the members of our discussion group for their valuable comments.

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. 1.
    Acheson, D.J.: Elementary Fluid Dynamics. Oxford University Press, London (1990)zbMATHGoogle Scholar
  2. 2.
    Zhen, H.L., Tian, B., Sun, Y., Chai, J., Wen, X.Y.: Solitons and chaos of the Klein–Gordon–Zakharov system in a high-frequency plasma. Phys. Plasmas 22, 102304 (2015)CrossRefGoogle Scholar
  3. 3.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23(3), 142–144 (1973)CrossRefGoogle Scholar
  4. 4.
    Wazwaz, A.M., El-Tantawy, S.A.: New \((3+1)\)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Pelinovsky, E., Kharif, C.: Extreme Ocean Waves. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  6. 6.
    Osborne, A.R.: Nonlinear Ocean Waves and The Inverse Scattering Transform. Elsevier, New York (2010)zbMATHGoogle Scholar
  7. 7.
    Korteweg, D.J., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(5), 422–443 (1895)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells–Fokas equation in inhomogeneous fibers. Chaos 25(6), 063111 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Liu, L., Tian, B., Yuan, Y.Q., Du, Z.: Dark-bright solitons and semirational rogue waves for the coupled Sasa–Satsuma equations. Phys. Rev. E 97(5), 052217 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wu, C.F., Grimshaw, R.H.J., Chow, K.W., Chan, H.N.: A coupled “AB” system: rogue waves and modulation instabilities. Chaos 25(10), 103113 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74(3), 701–709 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, L., Wang, Z.Q., Sun, W.R., Shi, Y.Y., Li, M., Xu, M.: Dynamics of peregrine combs and peregrine walls in an inhomogeneous Hirota and Maxwell-Bloch system. Commun. Nonlinear Sci. Numer. Simul. 47, 190–199 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33(3), 805–811 (1972)CrossRefGoogle Scholar
  14. 14.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34(1), 62–69 (1972)MathSciNetGoogle Scholar
  15. 15.
    Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Yao, P., Biswas, A.: Thirring optical solitons in birefringent fibers with spatio-temporal dispersion and Kerr law nonlinearity. Laser Phys. 25(1), 015402 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Wei, C., Yao, P., Bhrawy, A.H., Biswas, A.: Bright, dark and singular optical solitons in a cascaded system. Laser Phys. 25(2), 025402 (2015)CrossRefGoogle Scholar
  17. 17.
    Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980)Google Scholar
  18. 18.
    Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468(2142), 1716–1740 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85(2), 026607 (2012)CrossRefGoogle Scholar
  20. 20.
    Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93(6), 062217 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sun, W.R., Wang, L.: Matter rogue waves for the three-component Gross–Pitaevskii equations in the spinor Bose–Einstein condensates. Proc. R. Soc. A 474(2209), 20170276 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Sun, W.R., Liu, D.Y., Xie, X.Y.: Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers. Chaos 27(4), 043114 (2017)zbMATHCrossRefGoogle Scholar
  24. 24.
    Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795 (2010)CrossRefGoogle Scholar
  25. 25.
    Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107(25), 255005 (2011)CrossRefGoogle Scholar
  26. 26.
    Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33(5), 1807–1816 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal hermite–gaussian solitons of a \((3+1)\)-dimensional partially nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 84(3), 1157–1161 (2016)zbMATHCrossRefGoogle Scholar
  28. 28.
    Pedlosky, J.: Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 15–30 (1970)CrossRefGoogle Scholar
  29. 29.
    Gibbon, J.D., James, I.N., Moroz, I.M.: An example of soliton behaviour in a rotating baroclinic fluid. Proc. R. Soc. Lond. A. 367, 219–237 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Moroz, I.M., Brindley, J.: Evolution of baroclinic wave packets in a flow with continuous shear and stratification. Proc. R. Soc. Lond. A 377(1771), 379–404 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Tan, B., Boyd, J.P.: Envelope solitary waves and periodic waves in the AB equations. Stud. Appl. Math 109(2), 67–87 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Gibbon, J.D., James, I.N., Moroz, I.M.: An example of soliton behavior in a rotating baroclinic fluid. Proc. R. Soc. Lond. A 367(1729), 219–237 (1979)zbMATHCrossRefGoogle Scholar
  33. 33.
    Yu, G.F., Xu, Z.W., Hu, J., Zhao, H.Q.: Bright and dark soliton solutions to the AB system and its multi-component generalization. Commun. Nonlinear Sci. Numer. Simul. 47, 178–189 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Dodd, R.K., Eilkck, J.C., Gibbon, J.D., Moms, H.C.: Solitons and Nonlinear Wave Equations. Academic, New York (1982)Google Scholar
  35. 35.
    Jiang, X.H., Gao, Y.T., Gao, X.Y.: Investigation on the behaviors of the soliton solutions for a variable-coefficient generalized AB system in the geophysical flows. Mod. Phys. Lett. B 31(28), 1750254 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31(2), 125–127 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Func. Anal. Appl. 8(3), 226–235 (1974)zbMATHCrossRefGoogle Scholar
  38. 38.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)zbMATHCrossRefGoogle Scholar
  39. 39.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg–de Vries equation and generalizations. VI. methods for exact solution. Commun. Pure. Appl. Math. 27(1), 97–133 (1974)zbMATHCrossRefGoogle Scholar
  40. 40.
    Liu, X.Y., Triki, H., Zhou, Q., Liu, W.J., Biswas, A.: Analytic study on interactions between periodic solitons with controllable parameters. Nonlinear Dyn. 94, 703–709 (2018)CrossRefGoogle Scholar
  41. 41.
    Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Scientific and Technical Publishers, Shanghai (2005)Google Scholar
  42. 42.
    Caieniello, E.R.: Combinatorics and Renormalization in Quantum Field Theory. Benjamin, New York (1973)Google Scholar
  43. 43.
    Miura, M.R.: Bäcklund Transformation. Springer, Berlin (1978)Google Scholar
  44. 44.
    Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80(1–2), 715–721 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Su, C.Q., Gao, Y.T., Yu, X., Xue, L., Shen, Y.J.: Exterior differential expression of the \((1+1)\)-dimensional nonlinear evolution equation with Lax integrability. J. Math. Anal. Appl. 435(1), 735–745 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Musette, M.: Painlevé Analysis for Nonlinear Partial Differential Equations. Springer, Berlin (1998)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Computer Information ManagementInner Mongolia University of Finance and EconomicsHohhotChina
  2. 2.Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid DynamicsBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations