Advertisement

Nonlinear Dynamics

, Volume 96, Issue 4, pp 2509–2522 | Cite as

Nonlinear delayed feedback control of synchronization in an excitatory–inhibitory coupled neuronal network

  • Xiaohan Zhang
  • Shenquan LiuEmail author
Original Paper

Abstract

We explore nonlinear time-delayed feedback as a technique for the control of synchronization in excitatory–inhibitory coupled neuronal networks. The feedback signal can be expressed in two forms: differential feedback control and direct feedback control, to suppress bursting synchronization. In the two-dimensional plane of feedback strength and time delay, domains of effective synchronization suppression are described. For these two different types of nonlinear feedback, numerical simulations yield completely different results: The differential feedback is noninvasive, but it has a fragile robust performance. However, the direct feedback is robust against stimulation parameter variations, but it is invasive. Furthermore, electromagnetic induction is introduced by calculating the magnetic flux on membrane, and how it affects nonlinear time-delayed feedback control to suppress bursting synchronization is explored. We show that desynchronization effect of the differential feedback can be enhanced by appropriate electromagnetic induction. And desynchronization effect of the direct feedback is maintained by a small electromagnetic induction intensity, and no longer works once it exceeds a critical value. These presented results are expected to facilitate us to control abnormal brain synchrony, and promote the applications of the nonlinear feedback control scheme in practical clinical treatment.

Keywords

Excitatory–inhibitory coupled neuronal networks Nonlinear feedback control Electromagnetic induction Bursting synchronization 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11572127 and 11172103).

Compliance with ethical standards

Conflict of interest statement

We declare that we have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Ashwin, P., Borresen, J.: Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phys. Rev. E 70, 026203 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kiss, I.Z., Hudson, J.L.: Phase synchronization and suppression of chaos through intermittency in forcing of an electrochemical oscillator. Phys. Rev. E 64, 046215 (2001)CrossRefGoogle Scholar
  3. 3.
    Kiss, I.Z., Zhai, Y., Hudson, J.L.: Collective dynamics of chaotic chemical oscillators and the law of large numbers. Phys. Rev. Lett. 88, 238301 (2002)CrossRefGoogle Scholar
  4. 4.
    Neiman, A.B., Russell, D.F.: Synchronization of noise-induced bursts in noncoupled sensory neurons. Phys. Rev. Lett. 88, 13 (2002)CrossRefGoogle Scholar
  5. 5.
    Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (2003)CrossRefGoogle Scholar
  6. 6.
    Uhhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155–68 (2006)CrossRefGoogle Scholar
  7. 7.
    Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410, 277–84 (2001)CrossRefGoogle Scholar
  8. 8.
    Alberts, W.W., Jr, W.E., Feinstein, B.: Cortical potentials and parkinsonian tremor. Nature 221, 5181 (1969)CrossRefGoogle Scholar
  9. 9.
    Nini, A., Feingold, A., Slovin, H., Bergman, H.: Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74, 1800–5 (1995)CrossRefGoogle Scholar
  10. 10.
    Magill, P.J., Bolam, J.P., Bevan, M.D.: Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106, 313–30 (2001)CrossRefGoogle Scholar
  11. 11.
    Gatev, P., Wichmann, T.: Interactions between cortical rhythms and spiking activity of single basal ganglia neurons in the normal and parkinsonian state. Cereb. Cortex 19, 1330 (2009)CrossRefGoogle Scholar
  12. 12.
    Olanow, C.W., Brin, M.F., Obeso, J.A.: The role of deep brain stimulation as a surgical treatment for Parkinson’s disease. Neurology 55, 60–66 (2000)Google Scholar
  13. 13.
    Tass, A.P.: Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biol. Cybern. 85, 343–354 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Tass, P.A.: Effective desynchronization by means of double-pulse phase resetting. EPL 53, 15–21 (2007)CrossRefGoogle Scholar
  15. 15.
    Tass, P.A.: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Rosenblum, M.G., Pikovsky, A.S.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rosenblum, M.G., Pikovsky, A.S.: Controlling synchronization in an ensemble of globally coupled oscillators. Phys. Rev. Lett. 92, 102–114 (2004)CrossRefGoogle Scholar
  18. 18.
    Popovych, O.V., Hauptmann, C., Tass, P.A.: Effective desynchronization by nonlinear delayed feedback. Phys. Rev. Lett. 94, 102–164 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Li, X., Wang, J., Hu, W.: Effects of chemical synapses on the enhancement of signal propagation in coupled neurons near the canard regime. Phys. Rev. E 76, 041902 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Baptista, M.S., Kakmeni, F.M.Moukam, Grebogi, C.: Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information. Phys. Rev. E 82, 036203 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kopell, N., Ermentrout, B.: Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. USA 101, 15482–15487 (2004)CrossRefGoogle Scholar
  22. 22.
    Ivanchenko, M.V., Osipov, G.V., Shalfeev, V.D., Kurths, J.: Phase synchronization in ensembles of bursting oscillators. Phys. Rev. Lett. 93, 134101 (2004)CrossRefGoogle Scholar
  23. 23.
    Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999)CrossRefGoogle Scholar
  24. 24.
    Zhao, Z.G., Gu, H.: The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network. Chaos Solitons Fractals 80, 96–108 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., Resilient, A.: Low-frequency, small-world human brain functional network with highly connected association cortical Hubs. J. Neurosci. Off. J. Soc. Neurosci. 26, 63–72 (2006)CrossRefGoogle Scholar
  27. 27.
    Heuvel, M.P.D.V., Stam, C.J., Boersma, M., Pol, H.E.H.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008)CrossRefGoogle Scholar
  28. 28.
    Reijneveld, J.C., Ponten, S.C., Berends, H.W., Stam, C.J.: The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophys. 118, 2317–2331 (2007)CrossRefGoogle Scholar
  29. 29.
    Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1, 3 (2007)CrossRefGoogle Scholar
  30. 30.
    Lagofernandez, L.F., Huerta, R., Corbacho, F., Siguenza, J.A.: Fast response and temporal coherent oscillations in small-world networks. Phys. Rev. Lett. 84, 2758–2761 (2000)CrossRefGoogle Scholar
  31. 31.
    Ozer, M., Perc, M., Uzuntarla, M.: Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving. Phys. Lett. A 373, 964–968 (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, Q.Y., Perc, M., Duan, Z., Chen, G.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Phys. A Stat. Mech. Appl. 389, 3299–3306 (2010)CrossRefGoogle Scholar
  33. 33.
    Yu, H., Wang, J., Liu, Q., Den, B., Wei, X.: Delayed feedback control of bursting synchronization in small-world neuronal networks. Neurocomputing 99, 178–187 (2013)CrossRefGoogle Scholar
  34. 34.
    Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Modern Phys. B 31, 391 (2016)MathSciNetGoogle Scholar
  35. 35.
    Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)CrossRefGoogle Scholar
  36. 36.
    Gu, Huaguang, Pan, B.B.: Identification of neural firing patterns, frequency and temporal coding mechanisms in individual aortic baroreceptors. Front. Comput. Neurosci. 9, 108 (2015)CrossRefGoogle Scholar
  37. 37.
    Yang, X.L., Hu, L.P., Sun, Z.K.: How time-delayed coupling influences differential feedback control of bursting synchronization in modular neuronal network. Nonlinear Dyn. 86, 1–10 (2016)CrossRefGoogle Scholar
  38. 38.
    Turrigiano, G.G., Nelson, S.B.: Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci 5, 97–107 (2004)CrossRefGoogle Scholar
  39. 39.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–72 (2003)CrossRefGoogle Scholar
  40. 40.
    Li, Q., Zeng, H., Li, J.: Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria. Nonlinear Dyn. 79, 2295–2308 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Golomb, D., Shedmi, A., Curtu, R., Ermentrout, G.B.: Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study. J. Neurophys. 95, 1049 (2006)CrossRefGoogle Scholar
  43. 43.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Comput. Sci. Commun. Dict. 12, 1706–1707 (2001)zbMATHGoogle Scholar
  44. 44.
    Matthews, P.C., Strogatz, S.H.: Phase diagram for the collective behavior of limit-cycle oscillators. Phys. Rev. Lett. 65, 1701–1704 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Kurths, J., Pikovsky, A., Rosenblum, M.: Synchronization, a universal concept in nonlinear sciences. Am. J. Phys. 56, 47–47 (2003)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of MathematicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations