Skip to main content

Advertisement

Log in

General fractal topography: an open mathematical framework to characterize and model mono-scale-invariances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we reported there are two kinds of independent complexities in mono-scale-invariance, namely to be behavioral complexity determined by fractal behavior and original one wrapped in scaling object. Quantitative characterization of the complexities is fundamentally important for mechanism exploration and essential understanding of nonlinear systems. Recently, a new concept of fractal topography (\(\mathrm {\Omega }\)) was emerged to define the fractal behavior in self-similarities by scaling lacunarity (P) and scaling coverage (F) as \(\mathrm {\Omega }(P, F)\). It is, however, a “special fractal topography” because fractals are rarely deterministic and always appear stochastic, heterogeneous, and even anisotropic. For that, we reviewed a novel concept of “general fractal topography”, \({\varvec{\Omega }}(\mathrm {{\mathbf {P}}}, \mathrm {{\mathbf {F}}})\). In \({\varvec{\Omega }}\), \(\mathrm {{\mathbf {P}}}\) is generalized to a set accounting for direction-dependent scaling behaviors of the scaling object G, while \(\mathrm {{\mathbf {F}}}\) is extended to consider stochastic and heterogeneous effects. And then, we decomposed G into \(\mathrm {{\mathbf {G}}}\left( G_+, G_-\right) \) to ease type controlling and measurement quantification, with \(G_+\) wrapping the original complexity while \(G_-\) enclosing behavioral complexity. Together with \({\varvec{\Omega }}\) and \(\mathrm {{\mathbf {G}}}\), a mathematical model \(F_\mathrm {3S}\left( {\varvec{\Omega }}, \mathrm {{\mathbf {G}}}\right) \) was then established to unify the definition of deterministic or statistical, self-similar or self-affine, single- or multi-phase properties. For demonstration, algorithms are developed to model natural scale-invariances. Our investigations indicated that the general fractal topography is an open mathematic framework which can admit most complex scaling objects and fractal behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

D :

Space fractal dimension

\(D_x\) :

Space fractal dimension in x-direction

\({\mathcal {D}}\) :

Property fractal dimension

\({\overline{D}}\) :

General Space fractal dimension

\(D_s\) :

Mass fractal dimension

H :

Hurst exponent

\(H_{xy}\) :

General Hurst exponent

P :

Scaling lacunarity

\(P_x\) :

Scaling lacunarity in x-direction

\(\mathrm {{\mathbf {P}}}\) :

Scaling lacunarity set

\({\overline{P}}\) :

Effective scaling lacunarity, scalar quantity of \(\mathrm {{\mathbf {P}}}\)

F :

Scaling coverage

\(\mathrm {{\mathbf {F}}}\) :

Scaling coverage set

\(\langle F\rangle \) :

Expectation of scaling coverage

G :

Scaling object

\(G_+\) :

Regime wrapping original complexity in G

\(G_-\) :

Regime enclosing behavioral complexity in G

l :

Characteristic linear size of G

\(\mathrm {{\mathbf {l}}}\) :

Vector of l

\(\mathrm {{\mathbf {L}}}\) :

Range of \(\mathrm {{\mathbf {l}}}\)

\(l_x\) :

Characteristic linear size of G in x-direction

\({\overline{l}}\) :

Effective characteristic size of G

\({\mathcal {P}}\) :

A desired property

\(\mathrm {\Omega }\) :

Special fractal topography

\({\varvec{\Omega }}\) :

General fractal topography

\(\varphi \) :

Porosity

\(\rho \) :

Density of desired property \({\mathcal {P}}\)

\(\epsilon \) :

A dimensionless constant

max:

Maximum values

min:

Minimum values

References

  1. Mandelbrot, B.B.: How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636 (1967). https://doi.org/10.1126/science.156.3775.636

    Article  Google Scholar 

  2. Stanley, H.E., Meakin, P.: Multifractal phenomena in physics and chemistry. Nature 335(6189), 405 (1988). https://doi.org/10.1038/335405a0

    Article  Google Scholar 

  3. Zhang, X., Li, N., Gu, G.C., Wang, H., Nieckarz, D., Szabelski, P., He, Y., Wang, Y., Xie, C., Shen, Z.Y., L, J.T., Tang, H., Peng, L.M., Hou, S.M., Wu, K., Wang, Y.F.: Controlling Molecular Growth between Fractals and Crystals on Surfaces. ACS Nano. 9(12), 11909 (2015). https://doi.org/10.1021/acsnano.5b04427

    Article  Google Scholar 

  4. Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308(5961), 721 (1984). https://doi.org/10.1038/308721a0

    Article  Google Scholar 

  5. Jonkers, A.R.T.: Long-range dependence in the Cenozoic reversal record. Phys. Earth Planet. Inter. 135(4), 253 (2003). https://doi.org/10.1016/S0031-9201(03)00036-0

    Article  Google Scholar 

  6. Gneiting, T., Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev. 46(2), 269 (2004). https://doi.org/10.1137/S0036144501394387

    Article  MathSciNet  MATH  Google Scholar 

  7. Bejan, A., Lorente, S.: Constructal theory of generation of configuration in nature and engineering. J. Appl. Phys. 100(4), 041301 (2006). https://doi.org/10.1063/1.2221896

    Article  Google Scholar 

  8. Lanotte, A.S., Benzi, R., Malapaka, S.K., Toschi, F., Biferale, L.: Turbulence on a fractal fourier set. Phys. Rev. Lett. 115, 26 (2015). https://doi.org/10.1103/PhysRevLett.115.264502

    Article  MathSciNet  Google Scholar 

  9. Turcotte, D.L.: Fractals and Choas in Geology and Geophysics. Cambridge University Press, New York (1997). https://doi.org/10.1017/CBO9781139174695

    Book  Google Scholar 

  10. Dubuc, B., Quiniou, J.F., Roquescarmes, C., Tricot, C., Zucker, S.W.: Evaluating the fractal dimension of profiles. Phys. Rev. A 39(3), 1500 (1989). https://doi.org/10.1103/PhysRevA.39.1500

    Article  MathSciNet  Google Scholar 

  11. Schlager, W.: Fractal nature of stratigraphic sequences. Geology 32(3), 185 (2004). https://doi.org/10.1130/G202531.1

    Article  Google Scholar 

  12. Bailey, R.J., Smith, D.G.: Quantitative evidence for the fractal nature of the stratigraphic record: results and implications. P. Geologist Assoc. 116(2), 129 (2005). https://doi.org/10.1016/S0016-7878(05)80004-5

    Article  Google Scholar 

  13. Koutsoyiannis, D.: Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 48(1), 3 (2003). https://doi.org/10.1623/hysj.48.1.3.43481

    Article  Google Scholar 

  14. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661 (2009). https://doi.org/10.1137/070710111

    Article  MathSciNet  MATH  Google Scholar 

  15. Montanari, A., Rosso, R., Taqqu, M.S.: A seasonal fractional ARIMA model applied to the Nile river monthly flows at Aswan. Water Resour. Res. 36(5), 1249 (2000). https://doi.org/10.1029/2000WR900012

    Article  Google Scholar 

  16. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276(5309), 122 (1997). https://doi.org/10.1126/science.276.5309.122

    Article  Google Scholar 

  17. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399(6735), 461 (1999). https://doi.org/10.1038/20924

    Article  Google Scholar 

  18. Ashkenazy, Y., Ivanov, P.C., Havlin, S., Peng, C.K., Goldberger, A.L., Stanley, H.E.: Magnitude and sign correlations in heartbeat fluctuations. Phys. Rev. Lett. 86(9), 1900 (2001). https://doi.org/10.1103/PhysRevLett.86.1900

    Article  Google Scholar 

  19. King, R.D., George, A.T., Jeon, T., Hynan, L.S., Youn, T.S., Kennedy, D.N., Dickerson, B.: Characterization of atrophic changes in the cerebral cortex using fractal dimensional analysis. Brain Imaging Behav. 3(2), 154 (2009). https://doi.org/10.1007/s11682-008-9057-9

    Article  Google Scholar 

  20. Popescu, D.P., Flueraru, C., Mao, Y., Chang, S., Sowa, M.G.: Signal attenuation and box-counting fractal analysis of optical coherence tomography images of arterial tissue. Biomed. Opt. Express 1(1), 268 (2010). https://doi.org/10.1364/BOE.1.000268

    Article  Google Scholar 

  21. Adler, P.M., Thovert, J.F.: Real porous media: local geometry and macroscopic properties. Appl. Mech. Rev. 51(9), 537 (1998). https://doi.org/10.1115/1.3099022

    Article  Google Scholar 

  22. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347 (2001). https://doi.org/10.1029/1999RG000074

    Article  Google Scholar 

  23. Cheng, Q.M.: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J. Geochem. Explor. 122, 55 (2012). https://doi.org/10.1016/j.gexplo.2012.07.007

    Article  Google Scholar 

  24. Thovert, J.F., Wary, F., Adler, P.M.: Thermal conductivity of random media and regular fractals. J. Appl. Phys. 68(8), 3872 (1990). https://doi.org/10.1063/1.346274

    Article  Google Scholar 

  25. Li, G.X., Moon, F.C.: Fractal basin boundaries in a two-degree-of-freedom nonlinear system. Nonlinear Dyn. 1(3), 209 (1990). https://doi.org/10.1007/BF01858294

    Article  Google Scholar 

  26. Wu, Y.T., Shyu, K.K., Chen, T.R., Guo, W.Y.: Using three-dimensional fractal dimension to analyze the complexity of fetal cortical surface from magnetic resonance images. Nonlinear Dyn. 58(4), 745 (2009). https://doi.org/10.1007/s11071-009-9515-y

    Article  MATH  Google Scholar 

  27. Anishchenko V.S.: Fractals in nonlinear dynamics. In: Deterministic Nonlinear Systems. Fractals in Nonlinear Dynamics. Deterministic Nonlinear Systems. Springer Series in Synergetics, Springer, Cham (2014)

  28. He, Z.: Integer-dimensional fractals of nonlinear dynamics, control mechanisms, and physical implications. Sci. Rep. 8(1), 10324 (2018). https://doi.org/10.1038/s41598-018-28669-3

    Article  Google Scholar 

  29. El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed lagrangian oscillators on fractal. J. Stat. Phys. 172(6), 1617 (2018). https://doi.org/10.1007/s10955-018-2116-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu, B.M., Li, J.H.: Some fractal Characters of porous media. Fractals 9(3), 365 (2001). https://doi.org/10.1142/S0218348X01000804

    Article  Google Scholar 

  31. Friesen, W.I., Mikula, R.J.: Fractal dimensions of coal particles. J. Colloid Interf. Sci. 120(1), 263 (1987). https://doi.org/10.1016/0021-9797(87)90348-1

    Article  Google Scholar 

  32. Tyler, S.W., Wheatcraft, S.W.: Fractal processes in soil water retention. Water Resour. Res. 26(5), 1047 (1990). https://doi.org/10.1029/WR026i005p01047

    Article  Google Scholar 

  33. Sui, L., Ju, Y., Yang, Y., Yang, Y., Li, A.: A quantification method for shale fracability based on analytic hierarchy process. Energy 115, 637 (2016). https://doi.org/10.1016/j.energy.2016.09.035

    Article  Google Scholar 

  34. Jin, Y., Zhu, Y.B., Li, X., Zheng, J.L., Dong, J.B.: Scaling invariant effects on the permeability of fractal porous media. Transport Porous Med. 109(2), 433 (2015). https://doi.org/10.1007/s11242-015-0527-4

    Article  Google Scholar 

  35. Yousefi, M., Carranza, E.J.M.: Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput. Geosci. 79, 69 (2015). https://doi.org/10.1016/j.cageo.2015.03.007

    Article  Google Scholar 

  36. Zhao, J.N., Chen, S.Y., Zuo, R.G., Carranza, E.J.M.: Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets. Comput. Geosci. 37(12), 1958 (2011). https://doi.org/10.1016/j.cageo.2011.04.007

    Article  Google Scholar 

  37. Cheng, Q.M., Agterberg, F.P.: Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Comput. Geosci. 35(2), 234 (2009). https://doi.org/10.1016/j.cageo.2008.02.034

    Article  Google Scholar 

  38. Zuo, R.G., Agterberg, F.P., Cheng, Q.M., Yao, L.Q.: Fractal characterization of the spatial distribution of geological point processes. Int. J. Appl. Earth Obs. 11(6), 394 (2009). https://doi.org/10.1016/j.jag.2009.07.001

    Article  Google Scholar 

  39. Wheatcraft, S.W., Tyler, S.W.: An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24(4), 566 (1988). https://doi.org/10.1029/WR024i004p00566

    Article  Google Scholar 

  40. Jin, Y., Dong, J.B., Zhang, X.Y., Li, X., Wu, Y.: Scale and size effects on fluid flow through self-affine rough fractures. Int. J. Heat Mass Transf. 105, 443 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.010

    Article  Google Scholar 

  41. Katz, A.J., Thompson, A.H.: Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54, 1325 (1985). https://doi.org/10.1103/PhysRevLett.54.1325

    Article  Google Scholar 

  42. Wheatcraft, S.W., Cushman, J.H.: Hierarchical approaches to transport in heterogeneous porous media. Rev. Geophys. 29(S1), 263 (1991). https://doi.org/10.1002/rog.1991.29.s1.263

    Article  Google Scholar 

  43. Molz, F.J., Rajaram, H., Lu, S.: Stochastic fractal-based models of heterogeneity in subsurface hydrology: origins, applications, limitations, and future research questions. Rev. Geophys. 42(1), RG1002 (2004). https://doi.org/10.1029/2003RG000126

    Article  Google Scholar 

  44. Gaci, S.: A new method for characterizing heterogeneities from a core image using local Holder exponents. Arab. J. Geosci. 6(8), 2719 (2013). https://doi.org/10.1007/s12517-012-0611-9

    Article  Google Scholar 

  45. Pesin, Y.B.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, Chicago (1997)

    Book  MATH  Google Scholar 

  46. Costa, A.: Permeability-porosity relationship: a reexamination of the Kozeny–Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 33, L02318 (2006). https://doi.org/10.1029/2005GL025134

    Article  Google Scholar 

  47. Xu, P., Yu, B.M.: Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31(1), 74 (2008). https://doi.org/10.1016/j.advwatres.2007.06.003

    Article  Google Scholar 

  48. Jin, Y., Song, H.B., Hu, B., Zhu, Y.B., Zheng, J.L.: Lattice Boltzmann simulation of fluid flow through coal reservoir’s fractal pore structure. Sci. China Earth Sci. 56, 1519 (2013). https://doi.org/10.1007/s11430-013-4643-0

    Article  Google Scholar 

  49. Cai, J.C., Perfect, E., Cheng, C.L., Hu, X.Y.: Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18), 5142 (2014). https://doi.org/10.1021/la5007204

    Article  Google Scholar 

  50. Turner, M.J., Andrews, P.R., Blackledge, J.M.: Fractal Geometry in Digital Imaging, 1st edn. Academic Press, Orlando (1998)

    Google Scholar 

  51. Jin, Y., Wu, Y., Li, H., Zhao, M.Y., Pan, J.N.: Definition of fractal topography to essential understanding of scale-invariance. Sci. Rep. 7, 46672 (2017). https://doi.org/10.1038/srep46672

    Article  Google Scholar 

  52. Yu, B.M., Li, J.H.: Fractal dimensions for unsaturated porous media. Fractals 12(1), 17 (2004). https://doi.org/10.1142/S0218348X04002409

    Article  MATH  Google Scholar 

  53. Shokri, N., Sahimi, M.: Structure of drying fronts in three-dimensional porous media. Phys. Rev. E 85, 066312 (2012). https://doi.org/10.1103/PhysRevE.85.066312

    Article  Google Scholar 

  54. Perrier, E., Bird, N., Rieu, M.: Generalizing the fractal model of soil structure: the pore-solid fractal approach. Geoderma 88(3), 137 (1999). https://doi.org/10.1016/S0016-7061(98)00102-5

    Article  Google Scholar 

  55. Mandelbrot, B.B.: Self-affine fractals and fractal dimension. Phys. Scr. 32(4), 257 (1985). https://doi.org/10.1088/0031-8949/32/4/001

    Article  MathSciNet  MATH  Google Scholar 

  56. Lovejoy, S., Schertzer, D.: Scaling and multifractal fields in the solid earth and topography. Nonlinear Process. Geophs. 14(4), 465 (2007). https://doi.org/10.5194/npg-14-465-2007

    Article  Google Scholar 

  57. Turcotte, D.L., Newman, W.I.: Symmetries in geology and geophysics. Proc. Natl. Acad. Sci. 93(25), 14295 (1996). https://doi.org/10.1073/pnas.93.25.14295

    Article  Google Scholar 

  58. Madadi, M., Sahimi, M.: Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces. Phys. Rev. E 67(2), 026309 (2003). https://doi.org/10.1103/PhysRevE.67.026309

    Article  Google Scholar 

  59. Berry, M.V., Lewis, Z.V.: On the Weierstrass–Mandelbrot fractal function. Proc. R. Soc. A. 370(1743), 459 (1980). https://doi.org/10.1098/rspa.1980.0044

    Article  MathSciNet  MATH  Google Scholar 

  60. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617 (1998). https://doi.org/10.1063/1.368536

    Article  Google Scholar 

  61. Keller, A.A., Auset, M.: A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Adv. Water Resour. 30(6–7), 1392 (2007). https://doi.org/10.1016/j.advwatres.2006.05.013

    Article  Google Scholar 

  62. Joekar-Niasar, V., Doster, F., Armstrong, R.T., Wildenschild, D., Celia, M.A.: Trapping and hysteresis in two-phase flow in porous media: a pore-network study. Water Resour. Res. 49(7), 4244 (2013). https://doi.org/10.1002/wrcr.20313

    Article  Google Scholar 

  63. Hunt, A.G., Sahimi, M.: Flow, transport, and reaction in porous media: percolation scaling, critical-path analysis, and effective medium approximation. Rev. Geophys. 55(4), 993 (2017). https://doi.org/10.1002/2017RG000558

    Article  Google Scholar 

  64. Javadpour, F., Fisher, D., Unsworth, M.: Nanoscale gas flow in shale gas sediments. J. Can. Pet. Technol. 46(10), 55 (2007). https://doi.org/10.2118/07-10-06

    Article  Google Scholar 

  65. Wang, B.Y., Jin, Y., Chen, Q., Zheng, J.L., Zhu, Y.B., Zhang, X.B.: Derivation of permeability-pore relationship for fractal porous reservoirs using series-parallel flow resistance model and lattice Boltzmann method. Fractals 22(3), 1440005 (2014). https://doi.org/10.1142/S0218348X14400052

    Article  Google Scholar 

  66. Ghanbarian-Alavijeh, B., Hunt, A.G.: Comments on More general capillary pressure and relative permeability models from fractal geometry by Kewen Li. J. Contam. Hydrol. 140–141, 21 (2012). https://doi.org/10.1016/j.jconhyd.2012.08.004

    Article  Google Scholar 

  67. Liang, Z., RONG, H.E., Chen, Q., Xu, X., SATO, J.: Fractal generation of char pores through random walk. Combust. Sci. Technol. 179(3), 637 (2007)

    Article  Google Scholar 

  68. Wang, M.R., Wang, J.K., Pan, N., Chen, S.Y.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007). https://doi.org/10.1103/PhysRevE.75.036702

    Article  Google Scholar 

  69. Lanning, L.M., Ford, R.M.: Glass micromodel study of bacterial dispersion in spatially periodic porous networks. Biotechnol. Bioeng. 78(5), 556 (2002). https://doi.org/10.1002/bit.10236

    Article  Google Scholar 

  70. Wu, M., Xiao, F., Johnson-Paben, R.M., Retterer, S.T., Yin, X., Neeves, K.B.: Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation. Lab Chip 12(2), 253 (2012). https://doi.org/10.1039/c1lc20838a

    Article  Google Scholar 

  71. Chatzis, I., Dullien, F.A.L.: Application of the percolation theory for the simulation of penetration into porous media of a non wetting fluid and the prediction of the relative permeability curve. Rev. Inst. Fr. Pét. 37(2), 183 (1982). https://doi.org/10.2516/ogst:1982011

    Article  Google Scholar 

  72. Dullien, F.A.L.: Porous Media: Fluid Transport and Pore Structure, 2nd edn. Academic Press, New York (1992). https://doi.org/10.1016/C2009-0-26184-8

    Book  Google Scholar 

  73. Ayón, A.A., Braff, R., Lin, C.C., Sawin, H.H., Schmidt, M.A.: Characterization of a time multiplexed inductively coupled plasma etcher. J. Electrochem. Soc. 146(1), 339 (1999). https://doi.org/10.1149/1.1391611

    Article  Google Scholar 

  74. Gostick, J.T.: Random pore network modeling of fibrous PEMFC gas diffusion media using voronoi and delaunay tessellations. J. Electrochem. Soc. 160(8), F731 (2013). https://doi.org/10.1149/2.009308jes

    Article  Google Scholar 

  75. Jin, Y., Li, X., Zhao, M.Y., Liu, X.H., Li, H.: A mathematical model of fluid flow in tight porous media based on fractal assumptions. Int. J. Heat Mass Transf. 108(Part A), 1078 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.096

    Article  Google Scholar 

  76. Moon, F.C.M.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, New York (1992)

    Book  Google Scholar 

  77. Hilborn, R.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, 2nd edn. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jin.

Ethics declarations

Conflict of interest

This manuscript has not been published in part or in entirety and is not under consideration by another journal. All authors have been informed and consent to this submission. We declare no competing interests (financial or non-financial) or other interests that might be perceived to influence the results and/or discussion reported in this paper. In this research, all funding sources were correctly included and there are no animals involved. We have read and understood your journal’s policies, and we believe that neither the manuscript nor the study violates any of these.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Grant No. 41472128), National Science and Technology Major Project of China (Grant No. 2016ZX05067006-002), Shanxi CBM Union Foundation, China (Grant No. 2015012010), and the Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China (Grant No. 17IRTSTHN025)

Appendices

Appendix I: Modeling algorithm for pore–solid fractal

1.1 Preliminary work

For simplicity and without loss of generality, the x-direction size of G is assumed to be ranged in \(\left[ l_{x_\mathrm {min}}, l_{x_\mathrm {max}}\right] \), and the sample number of G is denoted by \({\mathcal {N}}_{G}\).

At first, the fractal topography is determined accounting for the stochastic nature and anisotropic scale-invariant properties (inset \(\textcircled {\small {1}}\) in Fig. 9) as:

(1) Determine \(\mathrm {{\mathbf {F}}}\) of \(\{F_1, \ldots , F_{N_\mathrm {e}}\}\) and their probability \(\{\mathrm {{Pr}}_1, \ldots , \mathrm {{Pr}}_{N_\mathrm {e}}\}\) with \(\sum _{i=1}^{N_\mathrm {e}}\mathrm {{Pr}}_{i}=1\). The requirements for these parameters have been described in Eq. (8).

(2) Determine the set of scaling lacunarities \(\mathrm {{\mathbf {P}}}\) and denote by \(P_\mathrm {min}\) the minimum scaling lacunarity.

(3) Therefore, the general scaling coverage \(C_\mathrm {F}\) is obtained as \(\left( \prod _{i=1}^dP_i/P_{\mathrm {min}}^d\right) \times \langle \mathrm {{\mathbf {F}}}\rangle \).

And then, a space of linear size \(L_{0_x}\times {L_{0_y}}\) is discretized into a grid system of \({\mathbb {G}}_0\), in terms of a rectangle cell with spacings of \(l_{x_\mathrm {max}}\) and \(l_{y_\mathrm {max}}\) in x- and y-direction which are the linear sizes of the maximum scaling object G in different direction (inset \(\textcircled {\small {2}}\) in Fig. 9). The sample number \({\mathcal {N}}_{G}\) could be therefore initialized as \(\langle \mathrm {{\mathbf {F}}}\rangle \times \left( L_{0_x}\times {L_{0_y}}\right) /\left( l_{x_\mathrm {max}}\times {l_{y_\mathrm {max}}}\right) \).

1.2 Generation process

The fractal modeling process basically demonstrated in Fig. 9 follows

  1. (i)

    Each cell in \({\mathbb {G}}_0\) (\(C_\mathrm {dad}\) for short) will be assigned a stochastic number by a uniform distribution function within \(\left[ 0, 1\right) \). For \(C_\mathrm {dad}\) with stochastic number ranged in \(\left( \sum _{j=1}^{i-1}\mathrm {{Pr}}_{i-1}, \sum _{j=1}^{i}\mathrm {{Pr}}_i\right] \) in a population with sample number of \({\mathcal {N}}_{G}\), it is then replaced by \(\mathrm {Evt}_i\left( l_{x_\mathrm {max}}, l_{y_\mathrm {max}}\right) \) and new subgrains (\(C_\mathrm {son}\)) with pore, solid, and fractal phase yield (inset \(\textcircled {\small {3}}\) in Fig. 9).

  2. (ii)

    If \(l_{x_\mathrm {max}}>l_{x_\mathrm {min}}\), set \(l_{x_\mathrm {max}}=l_{x_\mathrm {max}}/P_x\) and \(l_{y_\mathrm {max}}=l_{y_\mathrm {max}}/P_y\) and subdivide each \(C_\mathrm {son}\) with fractal phase (cells with gray color in inset \(\textcircled {\small {3}}\)) into a \(P_x\times P_y\) sub grid system \({\mathbb {G}}_1\) (as those bounded by blue lines in insets \(\textcircled {\small {4}}\) and \(\textcircled {\small {5}}\) in two successive iterations); else jump to Step (iv).

  3. (iii)

    Take the new cells in all \({\mathbb {G}}_1\)s as a whole population and denote them as the role of \(C_\mathrm {dad}\). Therefore, the sample size of \(C_\mathrm {dad}\) population changes into \({\mathcal {N}}_{G}={\mathcal {N}}_{G}\times {C_\mathrm {F}}\). Repeat Steps (i) and (ii) for all \(C_\mathrm {dad}\)s.

  4. (iv)

    Finally, assign solid (inset \(\textcircled {\small {7}}\)) or pore phase (inset \(\textcircled {\small {8}}\)) to all \(C_\mathrm {son}\)s with fractal phase as we like to.

Appendix II: Modeling algorithm for fractal tight porous media

1.1 Preliminary work

Definitions of original spatial and scaling parameters need by a \(F_\mathrm {3S}\), respectively, to be:

  1. (1)

    A space of size \(l_{x_\mathrm {max}}\times {l_{y_{\mathrm {max}}}}\), denoted by \({\mathbb {R}}_0\), is considered as the representative unit of a fractal tight porous media.

  2. (2)

    Denote the minimum scale of G in the direction of x by \(l_{x_\mathrm {min}}\) and initialize to \(l_{x_\mathrm {max}}\).

  3. (3)

    \({\mathcal {N}}_\mathrm {sub}\) (the number of subregions in the G for a fractal network) is provided to portion a target space.

  4. (4)

    Define the scaling lacunarity set \(\mathrm {{\mathbf {P}}}_\mathrm {net}\) of \(\left( P_{x}, P_{y}\right) \).

1.2 Modeling process

In modeling of self-affine fractal tight porous media, an important step is to stretch the space in a determined direction before the space portion, as Fig. 15 demonstrates. Therefore, the modeling process is then modified into:

Step I: mathematical definition of\(F_\mathrm {3S}\left\{ {\varvec{\Omega }}, \mathrm {{\mathbf {G}}}, \mathrm {{\mathbf {L}}}\right\} \)

  1. (i)

    A set of Poisson points with number of \({\mathcal {N}}_\mathrm {sub}\) were generated in the full domain of \({\mathbb {R}}_0\) to portion it into a set of polygons following the Voronoi scheme similar to the way proposed by Wu et al. [70] (see inset \(\textcircled {\small {1}}\) in Fig. 15).

  2. (ii)

    Stretch \({\mathbb {R}}_0\) into \({\mathbb {R}}_1\) of size \(l_{x_\mathrm {max}}\times {l_{y_\mathrm {max}}}\) with \(l_{y_\mathrm {max}}\) equal to \(P_{yx}l_{y_\mathrm {max}}\).

  3. (iii)

    Determine \(\lambda _\mathrm {max}\): According to Eq. (27), \(x_p=1-{{\mathcal {N}}_\mathrm {pt}}/{P_{y}^d}\). And, \(x_p=L_\mathrm {t}\lambda _\mathrm {max}/S_0\) in \({\mathbb {R}}_1\) with \(L_\mathrm {t}\) the total length of all new edges and \(S_0=l_{x_\mathrm {max}}\times {l_{y_\mathrm {max}}}\). Therefore, \(\lambda _\mathrm {max}\) is obtained.

  4. (iv)

    Construct scaling object G: All new edges were buffered into a network of channels with a two-side buffering distance of \(\lambda _\mathrm {max}/2\) except for the space boundaries. The generated isolated polygons and the channels represent the grains and the intersected capillaries, respectively, as shown by inset \(\textcircled {\small {2}}\) in Fig. 15.

  5. (v)

    Determine the expectation of scaling coverage: randomly choose \({\mathcal {N}}_f\) grains to be fractal phase (gray regimes in inset \(\textcircled {\small {2}}\)), others to solid one. Therefore, \(x_p\), \(x_s\), and \(x_f\) are determined. Consequently, the scaling coverage \(C_\mathrm {F}\) is quantified as per Eq. (30).

Thus, \(F_\mathrm {3S}\left\{ \mathbf {\Omega }(\mathrm {{\mathbf {P}}}_\mathrm {net}, \mathrm {{\mathbf {F}}}_\mathrm {net}), \mathrm {{\mathbf {G}}}(G_+, G_-), \mathrm {{\mathbf {L}}}[\mathrm {{\mathbf {l}}}_\mathrm {min}, \mathrm {{\mathbf {l}}}_\mathrm {max}]\right\} \) is quantitatively defined if \(\mathrm {{\mathbf {l}}}_\mathrm {min}\) had been preset, with \(\langle \mathrm {{\mathbf {F}}}_\mathrm {net}\rangle =C_\mathrm {F}\).

Step II: fractal iteration

  1. (i)

    Each grains with fractal phase is portioned into a set of polygons with a fixed number of points (\({\mathcal {N}}_\mathrm {sub}^{xy}\) by Eq. (32)) randomly distributed in. Set \(l_{y_\mathrm {max}}=P_{yx}l_{y_\mathrm {max}}\) and stretch \({\mathbb {R}}_i\) and all elements into \({\mathbb {R}}_{i+1}\) of size \(l_{x_\mathrm {max}}\times {l_{y_\mathrm {max}}}\). After setting \(\lambda _\mathrm {max}\) to \(\lambda _\mathrm {max}/P_{x}\), all new edges are then buffered into channels with a two-side buffering distance of \(\lambda _\mathrm {max}/2\), and the new subgrains were generated, as the inset \(\textcircled {\small {3}}\) demonstrates.

  2. (ii)

    Set \({\mathcal {N}}_f=C_\mathrm {F}\times {\mathcal {N}}_f\) and randomly choose \({\mathcal {N}}_f\) new subgrains to be fractal phase, others to solid phase. Assign the regime of new channels to be pore phase and set \(l_{x_\mathrm {min}}=l_{x_\mathrm {min}}/P_{x}\);

  3. (iii)

    Repeat step (ii) if the given hydraulic diameter \(\lambda _\mathrm {min}>\lambda _\mathrm {max}\), otherwise go to Step III.

Step III: final disposition

  1. (i)

    Set all new subgrains to be solid phase, see the insets \(\textcircled {\small {4}}\) and \(\textcircled {\small {5}}\).

  2. (ii)

    Stretch the final \({\mathbb {R}}\) with all elements back to its original size and the self-affine fractal networks is obtained, as shown in inset \(\textcircled {\small {6}}\) of Fig. 15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Liu, X., Song, H. et al. General fractal topography: an open mathematical framework to characterize and model mono-scale-invariances. Nonlinear Dyn 96, 2413–2436 (2019). https://doi.org/10.1007/s11071-019-04931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04931-9

Keywords

Navigation