Skip to main content
Log in

Autapse-induced firing patterns transitions in the Morris–Lecar neuron model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In 1948, Hodgkin identified three firing patterns of a single neuron in response to increasing the external DC input. In this work, we investigated the responses of a single neuron with an autapse based on a modified Morris–Lecar neuron model, which can exhibit the three types of firing patterns by changing only one parameter. An excitatory autapse was found to enhance the firing frequency, but an inhibitory autapse suppressed neuron firing. With excitatory autaptic feedback, the firing of a Class-1 neuron could be switched to that of a Class-2 neuron, and a Class-3 neuron could exhibit a Class-2 firing pattern. The sustained response frequency of the Class-2 neuron transferred from that of Class-3 is only dependent on the autaptic time delay, and the frequency decays gradually with increased the delay time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50, 303–304 (1999)

    Article  Google Scholar 

  2. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  3. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  4. Suresh, R., Senthilkumar, D.V., Lakshmanan, M., et al.: Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems. Chaos Solitons Fractals 93, 235–245 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hettiarachchi, I.T., Lakshmanan, S., Bhatti, A., et al.: Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dyn. 86, 1249–1262 (2016)

    Article  MATH  Google Scholar 

  6. Yamakou, E.M., Inack, E.M., Kakmeni, F.M.M.: Ratcheting and energetic aspects of synchronization in coupled bursting neurons. Nonlinear Dyn. 83, 541–554 (2016)

    Article  MathSciNet  Google Scholar 

  7. Kim, S.Y., Lim, W.: Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn. Neurodyn. 11, 395–413 (2017)

    Article  Google Scholar 

  8. Panaggio, M.J., Abrams, D.M.: Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28(3), R67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hizanidis, J., Kanas, V.G., Bezerianos, A., et al.: Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models. Int. J. Bifurc. Chaos 24(03), 1450030 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vogels, T.P., Abbott, L.F.: Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12(4), 483 (2009)

    Article  Google Scholar 

  11. Wang, L.F., Jia, F., Liu, X.Z., et al.: Temperature effects on information capacity and energy efficiency of Hodgkin–Huxley neuron. Chin. Phys. Lett. 32(10), 108701 (2015)

    Article  Google Scholar 

  12. Ju, H., Hines, M.L., Yu, Y.: Cable energy function of cortical axons. Sci. Rep. 6, 29686 (2016)

    Article  Google Scholar 

  13. Christoph, J., Chebbok, M., Richter, C., et al.: Electromechanical vortex filaments during cardiac fibrillation. Nature 555(7698), 667 (2018)

    Article  Google Scholar 

  14. Jalife, J.: The tornadoes of sudden cardiac arrest. Nature 555, 597–598 (2018)

    Article  Google Scholar 

  15. Tateno, T., Harsch, A., Robinson, H.P.C.: Threshold firing frequency–current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics. J. Neurophysiol. 92(4), 2283–2294 (2004)

    Article  Google Scholar 

  16. Yu, L.C., Ma, J., Zhang, G.Y., et al.: Suppression of spiral waves by voltage clamp techniques in a conductance-based cardiac tissue model. Chin. Phys. Lett. 25(7), 2706 (2008)

    Article  Google Scholar 

  17. Wu, X.Y., Ma, J.: The formation mechanism of defects, spiral wave in the network of neurons. PLoS ONE 8(1), e55403 (2013)

    Article  Google Scholar 

  18. Zhang, J., Tang, J., Ma, J., et al.: The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue. Physica A 491, 340–346 (2018)

    Article  MathSciNet  Google Scholar 

  19. Prescott, S.A., De Koninck, Y., Sejnowski, T.J.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4(10), e1000198 (2008)

    Article  MathSciNet  Google Scholar 

  20. Huang, C., Sun, W., Zheng, Z., et al.: Hopf bifurcation control of the M–L neuron model with type I. Nonlinear Dyn. 87(2), 755–766 (2017)

    Article  Google Scholar 

  21. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107(2), 165–181 (1948)

    Article  Google Scholar 

  22. Izhikevich, E.M.: Dynamical Systems in Neuroscience. The MIT Press, Cambridge, MA (2007)

    Google Scholar 

  23. Tateno, T., Robinson, H.P.C.: Rate coding and spike-time variability in cortical neurons with two types of threshold dynamics. J. Neurophysiol. 95(4), 2650–2663 (2006)

    Article  Google Scholar 

  24. Sadeghi, S., Valizadeh, A.: Synchronization of delayed coupled neurons in presence of inhomogeneity. J. Comput. Neurosci. 36(1), 55–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Esfahani, Z.G., Valizadeh, A.: Zero-lag synchronization despite inhomogeneities in a relay system. PLoS ONE 9(12), e112688 (2014)

    Article  Google Scholar 

  26. Wang, H.T., Wang, L.F., Yu, L.C., et al.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E 83(2), 021915 (2011)

    Article  Google Scholar 

  27. Wang, H.T., Chen, Y., Chen, Y.: First-spike latency in Hodgkin’s three classes of neurons. J. Theor. Biol. 328, 19–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, C.N., Guo, S.L., Xu, Y., et al.: Formation of autapse connected to neuron and its biological function. Complexity 2017, 5436737 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Xu, Y., Ying, H.P., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  30. Qin, H.X., Ma, J., Wang, C.N., et al.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57(10), 1918–1926 (2014)

    Article  Google Scholar 

  31. Ma, J., Song, X.L., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Article  Google Scholar 

  32. Wang, L., Wang, H., Yu, L., et al.: Role of axonal sodium-channel band in neuronal excitability. Phys. Rev. E 85(5), 052901 (2011)

    Article  Google Scholar 

  33. Kole, M.H.P., Stuart, G.J.: Signal processing in the axon initial segment. Neuron 73(2), 235–247 (2012)

    Article  Google Scholar 

  34. Van der Loos, H.: Neuronal circuitry and its development. Perspect. Brain Res. 45, 259–278 (1976)

    Article  Google Scholar 

  35. Yin, L., Zheng, R., Ke, W., et al.: Autapses enhance bursting and coincidence detection in neocortical pyramidal cells. Nat. Commun. 9(1), 4890 (2018)

    Article  Google Scholar 

  36. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919 (2000)

    Article  Google Scholar 

  37. Song, X., Wang, H., Chen, Y.: Coherence resonance in an autaptic Hodgkin–Huxley neuron with time delay. Nonlinear Dyn. 94(1), 141 (2018)

    Article  Google Scholar 

  38. Wang, H.T., Wang, L.F., Chen, Y., et al.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24(3), 033122 (2014)

    Article  MathSciNet  Google Scholar 

  39. Yilmaz, E., Ozer, M., Baysal, V., et al.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  40. Yilmaz, E., Ozer, M.: Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron. Physica A 421, 455–462 (2015)

    Article  Google Scholar 

  41. Wang, H.T., Chen, Y.: Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals. Physica A 462, 321–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, H.T., Sun, Y.J., Li, Y.C., et al.: Influence of autapse on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J. Theor. Biol. 358, 25–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, H.T., Ma, J., Chen, Y., et al.: Effect of an autapse on the firing pattern transition in a bursting neuron. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3242–3254 (2014)

    Article  MathSciNet  Google Scholar 

  44. Wang, H.T., Chen, Y.: Firing dynamics of an autaptic neuron. Chin. Phys. B 24(12), 128709 (2015)

    Article  Google Scholar 

  45. Guo, D., Chen, M., Perc, M., et al.: Firing regulation of fast-spiking interneurons by autaptic inhibition. EPL (Europhys. Lett.) 114(3), 30001 (2016)

    Article  Google Scholar 

  46. Zhao, Z., Jia, B., Gu, H.G.: Bifurcations and enhancement of neuronal firing induced by negative feedback. Nonlinear Dyn. 86(3), 1549–1560 (2016)

    Article  Google Scholar 

  47. Zhao, Z., Gu, H.G.: Transitions between classes of neuronal excitability and bifurcations induced by autapse. Sci. Rep. 7(1), 6760 (2017)

    Article  Google Scholar 

  48. Connelly, W.M., Lees, G.: Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex. J. Physiol. 588, 2047–2063 (2009)

    Article  Google Scholar 

  49. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)

    Book  MATH  Google Scholar 

  50. Sterratt, D., Graham, B., Gillies, A., et al.: Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  51. Smeal, R.M., Ermentrout, G.B., White, J.A.: Phase-response curves and synchronized neural networks. Philos. Trans. R. Soc. B 365(1551), 2407–2422 (2010)

    Article  Google Scholar 

  52. Wang, L.F., Wang, H.T., Yu, L.C., et al.: Spike-threshold variability originated from separatrix-crossing in neuronal dynamics. Sci. Rep. 6, 31719 (2016)

    Article  Google Scholar 

  53. Wu, S.D., Zhang, Y.S., Cui, Y., et al.: Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches. Neural Netw. 110, 95–103 (2019). https://doi.org/10.1016/j.neunet.2018.10.017

    Article  Google Scholar 

  54. Guo, D.Q., Wu, S.D., Chen, M.M., et al.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 2609 (2016)

    Google Scholar 

  55. Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin–Huxley neuron with delayed feedback. Phys. Rev. E 85(2), 021917 (2012)

    Article  Google Scholar 

  56. Kalat, J.W.: Biological Psychology. Cengage Learning, Wadsworth (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant No. 11675008 (YC), Grant No. 21434001 (YC) and Grant No. 11447027 (HTW). HTW acknowledges in addition supports from Natural Science Basic Research Plan in Shaanxi Province of China with Grant No. 2016JQ1037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflicts of interest

All the authors declare that there are no any conflict with the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, H. & Chen, Y. Autapse-induced firing patterns transitions in the Morris–Lecar neuron model. Nonlinear Dyn 96, 2341–2350 (2019). https://doi.org/10.1007/s11071-019-04925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04925-7

Keywords

Navigation