Skip to main content
Log in

Non-differentiability of quasi-potential and non-smooth dynamics of optimal paths in the stochastic Morris–Lecar model: Type I and II excitability

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We studied the stochastic Morris–Lecar model of both Type I and II excitability using the large deviation theory. A mechanical interpretation for the discontinuity of the optimal path that has been found for decades in nearly all systems driven by weak white noise was provided. By doing that, we connected some long-separated concepts in mechanics, mathematics and physics: sliding set of non-smooth dynamical systems, non-differentiable set of the viscosity solution to the Hamilton–Jacobi equation and switch line, the singular structure which occurs in the Lagrangian manifold to characterize the sudden switch of optimal paths. We found that the existence of the sliding set engendered some novel dynamics in the case of Type I excitability. As for Type II, we found that the canard separatrix forms a boundary threshold of different dynamical behaviors and a crossing point in weak noise limit is located. Besides, the validity of this separatrix as the threshold is verified by a comparison with a level curve of quasi-potential at the cusp of the switching line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kloeden, P., Potzsche, C.: Nonautonomous Dynamical Systems in the Life Sciences. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  2. Hodgkin, A.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107, 165–181 (1948)

    Article  Google Scholar 

  3. Izhikevich, E.: Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  4. Sekerli, M., Del Negro, C., Lee, R., Butera, R.: Estimating action potential thresholds from neuronal time-series: new metrics and evaluation of methodologies. IEEE Trans. Biomed. Eng. 51, 1665–1672 (2004)

    Article  Google Scholar 

  5. Prescott, S., Koninck, Y., Sejnowski, T.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. Plos Comput. Biol. 4, e1000198 (2008)

    Article  MathSciNet  Google Scholar 

  6. Mitry, J., Mccarthy, M., Kopell, N., Wechselberger, M.: Excitable neurons, firing threshold manifolds and canards. J. Math. Neurosci. 3, 12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wieczorek, S., Ashwin, P., Luke, C., Cox, P.: Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A Math. Phys. Eng. Sci. 467, 1243–1269 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fitzhugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biol. 17, 257–278 (1955)

    Google Scholar 

  9. Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Grassberger, P.: Noise-induced escape from attractors. J. Phys. A Math. Gen. 22, 3283–3290 (1989)

    Article  MathSciNet  Google Scholar 

  11. Khovanov, I., Polovinkin, A., Luchinsky, D., McClintock, P.: Noise-induced escape in an excitable system. Phys. Rev. E 87, 032116 (2013)

    Article  Google Scholar 

  12. Chen, Z., Zhu, J., Liu, X.: Crossing the quasi-threshold manifold of a noise-driven excitable system. Proc. R. Soc. A Math. Phys. Eng. Sci. 473, 20170058 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilborn, R., Erwin, R.: Coherence resonance in models of an excitable neuron with noise in both the fast and slow dynamics. Phys. Lett. A 322(1–2), 19–24 (2004)

    Article  MATH  Google Scholar 

  14. DeVille, R., Vanden-Eijnden, E., Muratov, C.: Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys. Rev. E 72(3), 031105 (2005)

    Article  MathSciNet  Google Scholar 

  15. Franovic, I., Perc, M., Todorovic, K., Kostic, S., Buric, N.: Activation process in excitable systems with multiple noise sources: Large number of units. Phys. Rev. E 92(6), 062912 (2015)

    Article  MathSciNet  Google Scholar 

  16. Newby, J., Bressloff, P., Keener, J.: Breakdown of fast-slow analysis in an excitable system with channel noise. Phys. Rev. Lett. 111, 128101 (2013)

    Article  Google Scholar 

  17. Zhu, Q., Wang, H.: Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function. Automatica 87, 166–175 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Newby, J.: Spontaneous excitability in the Morris–Lecar model with ion channel noise. SIAM J. Appl. Dyn. Syst. 13(4), 1756C1791 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  20. Chen, Z., Liu, X.: Subtle escaping modes and subset of patterns from a nonhyperbolic chaotic attractor. Phys. Rev. E 95(1), 012208 (2017)

    Article  MathSciNet  Google Scholar 

  21. Crandall, M., Lions, P.: Vicosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MATH  Google Scholar 

  22. Crandall, M., Evans, L., Lions, P.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ishii, H.: A simple, direct proof of uniqueness for solutions of the Hamilton–Jacobi equations of eikonal type. Proc. Am. Math. Soc. 100, 247–251 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sethian, A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cameron, M.: Finding the quasipotential for nongradient SDEs. Phys. D Nonlinear Phenom. 241, 1532–1550 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heymann, M., Vanden-Eijnden, E.: The geometric minimum action method: a least action principle on the space of curves. Commun. Pure Appl. Math. 61, 1052–1117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Whitney, H.: On singularities of mappings of Euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. 62, 374–410 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dykman, M., Luchinsky, D., Mcclintock, P., Smelyanskiy, V.: Corrals and critical behavior of the distribution of fluctuational paths. Phys. Rev.Lett. 77, 5229–5232 (1996)

    Article  Google Scholar 

  29. Chen, Z., Liu, X.: Patterns and singular features of extreme fluctuational paths of a periodically driven system. Phys. Lett. A 380, 1953–1958 (2016)

    Article  MathSciNet  Google Scholar 

  30. Chen, Z., Liu, X.: Noise induced transitions and topological study of a periodically driven system. Commun. Nonlinear Sci. Numer. Simul. 48, 454–461 (2017)

    Article  MathSciNet  Google Scholar 

  31. Dykman, M.: Observable and hidden singular features of large fluctuations in nonequilibrium systems. Phys. Lett. A 195, 53–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Filippov, A.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Transl. 2, 199–231 (1964)

    MATH  Google Scholar 

  33. Kuznetsov, Y., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc Chaos 13, 2157–2188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guardia, M., Seara, T., Teixeira, M.: Generic bifurcations of low codimension of planar Filippov systems. Int. J. Bifurc. Chaos 250, 1967–2023 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fenichela, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  37. Smelyanskiy, V., Dykman, M., Maier, R.: Topological features of large fluctuations to the interior of a limit cycle. Phys. Rev. E 55, 2369–2391 (1997)

    Article  MathSciNet  Google Scholar 

  38. Maier, R., Stein, D.: Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57(3), 752C790 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Luchinsky, D., Maier, R., Mannella, R., Mcclintock, P., Stein, D.: Observation of saddle-point avoidance in noise-induced escape. Phys. Rev. Lett. 82, 1806–1809 (1999)

    Article  Google Scholar 

  40. Ermentrout, B.: Type I membranes, phase resetting curves, and synchrony. Neural Comput. 8, 979–1001 (1996)

    Article  Google Scholar 

  41. Lucken, L., Yanchuk, S., Popovych, O., Tass, P.: Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Front. Comput. Neurosci. 7, 63 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank gratefully Prof. Hebai Chen at the Fuzhou University for informative discussions in topics like non-smooth dynamics and sliding sets. Z.Chen would also like to thank the support and care from M.J.Wang over the passed years

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11472126, 11232007, 1177020530), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (Grant No. MCMS-0116G01).

Author information

Authors and Affiliations

Authors

Contributions

ZC, JZ and XL designed the study and organized the entire research program. ZC wrote the manuscript, MATLAB code and performed the simulations. JZ offered considerable advice during the research. XL corrected and revised the manuscript, supervised the modeling and simulation. All authors gave final approval for publication.

Corresponding author

Correspondence to Xianbin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data accessibility

The algorithm to calculate the quasi-potential can be found in [22] and necessary parameters for all the numerical results are shown in the captions of figures. Readers can perform the method to reproduce the present numerical results by any program language such as C, Fortran or MATLAB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Parameters of the dimensionless Morris–Lecar model have been chosen according to Refs. [40, 41] as:

Type I Excitability: \(I=0.05\), \(\phi =0.2\), \(V_k=-0.7\), \(V_{Ca}=1\), \(V_L=-0.5\), \(g_l=0.5\), \(g_k=2\), \(g_{Ca}=1.33\), \(V_1=-0.01\), \(V_2=0.15\), \(V_3=0.1\), \(V_4=0.145\);

Type II Excitability: \(I=0.05\), \(\phi =0.2\), \(V_k=-0.7\), \(V_{Ca}=1\), \(V_L=-0.5\), \(g_l=0.5\), \(g_k=2\), \(g_{Ca}=1.33\), \(V_1=-0.01\), \(V_2=0.15\), \(V_3=0.017\), \(V_4=0.25\);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhu, J. & Liu, X. Non-differentiability of quasi-potential and non-smooth dynamics of optimal paths in the stochastic Morris–Lecar model: Type I and II excitability. Nonlinear Dyn 96, 2293–2305 (2019). https://doi.org/10.1007/s11071-019-04922-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04922-w

Keywords

Navigation