Skip to main content
Log in

Effect of fast parametric excitation on the instability behaviour of a spinning disc bounded in a compressible fluid-filled enclosure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focusses on investigating how high-frequency (fast) excitations affect the aeroelastic instability of a spinning disc immersed in a compressible fluid-filled enclosure. The method of multiple scales is used to recast the governing equations of motion into separate equations for fast and slow motions. The slow motions represent the dynamic behaviour of the non-autonomous coupled system. The stability boundaries of the coupled system are investigated through a bifurcation analysis with respect to the mean disc rotation speed and the forcing amplitude. The study reveals that an increase in the forcing amplitude of the fast parametric excitation results in a corresponding increase in the frequencies and the critical speeds of the coupled disc modes associated with the slow motions. Moreover, it is shown that the aeroelastic stability can be postponed or suppressed due to the stiffening and gyroscopic effects induced by the fast excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific Publishing Company, Singapore (2000)

    Book  Google Scholar 

  2. Bourkha, R., Belhaq, M.: Effect of fast harmonic excitation on a self-excited motion in van der pol oscillator. Chaos Solitons Fractals 34(2), 621–627 (2007)

    Article  MATH  Google Scholar 

  3. Chung, J., Oh, J.E., Yoo, H.: Non-linear vibration of a flexible spinning disc with angular acceleration. J. Sound Vib. 231(2), 375–391 (2000)

    Article  Google Scholar 

  4. D’Angelo, C., Mote, C.D.: Aerodynamically excited vibration and flutter of a thin disk rotating at supercritical speed. J. Sound Vib. 168(1), 15–30 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, R.B.: Techniques to assess acoustic-structure interaction in liquid rocket engines. Ph.D. thesis, Duke University (2008)

  6. Dowell, E.H., Gorman, G.F., Smith, D.A.: Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment. J. Sound Vib. 52(4), 519–542 (1977)

    Article  MATH  Google Scholar 

  7. Hansen, M.H.: Aeroelasticity and Dynamics of Spinning Disks. Technical University of Denmark, Danish Center for Applied Mathematics and Mechanics, Kgs. Lyngby (1999)

    MATH  Google Scholar 

  8. Hansen, M.H.: Effect of high-frequency excitation on natural frequencies of spinning discs. J. Sound Vib. 234(4), 577–589 (2000)

    Article  Google Scholar 

  9. Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory, 2nd edn. Springer, New York (1990)

    Book  MATH  Google Scholar 

  10. Jana, A., Raman, A.: Nonlinear aeroelastic flutter phenomena of a flexible disk rotating in an unbounded fluid. J. Fluids Struct. 20(7), 993–1006 (2005)

    Article  Google Scholar 

  11. Kang, N., Raman, A.: Aeroelastic flutter mechanisms of a flexible disk rotating in an enclosed compressible fluid. J. Appl. Mech. 71(1), 120–130 (2004)

    Article  MATH  Google Scholar 

  12. Kang, N., Raman, A.: Vibrations and stability of a flexible disk rotating in a gas-filled enclosure—part 1: theoretical study. J. Sound Vib. 296(4), 651–675 (2006)

    Article  Google Scholar 

  13. Louisell, W.H.: Coupled Mode and Parametric Electronics. Wiley, New York (1960)

    Google Scholar 

  14. Malhotra, N., Namachchivaya, N.S.: Local bifurcations in the motion of spinning discs. Chaos Solitons Fractals 14(2), 203–226 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Malhotra, N., Namachchivaya, N.S., McDonald, R.J.: Multipulse orbits in the motion of flexible spinning discs. J. Nonlinear Sci. 12(1), 1–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Malhotra, N., Namachchivaya, N.S., Whalen, T.: Finite amplitude dynamics of a flexible spinning disk. In: Proceedings of ASME Biennial Conference on Mechanical Vibration and Noise, pp. 239–250 (1995)

  17. Merkin, R.D.: Introduction to the Theory of Stability, vol. 24. Springer, New York (1997)

    Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  19. Remigius, W.D., Gupta, S., Sarkar, S.: Bifurcation analysis of an accelerating disc immersed in a bounded compressible medium near principal parametric resonance. Int. J. Non-Linear Mech. 101, 77–85 (2018)

    Article  Google Scholar 

  20. Remigius, W.D., Sarkar, S., Gupta, S.: Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid. J. Sound Vib. 392, 260–279 (2017)

    Article  Google Scholar 

  21. Renshaw, A.A., D’Angelo, C., Mote, C.D.: Aerodynamically excited vibration of a rotating disk. J. Sound Vib. 177(5), 577–590 (1994)

    Article  MATH  Google Scholar 

  22. Tcherniak, D.: The influence of fast excitation on a continuous system. J. Sound Vib. 227(2), 343–360 (1999)

    Article  Google Scholar 

  23. Tcherniak, D., Thomsen, J.J.: Slow effects of fast harmonic excitation for elastic structures. Nonlinear Dyn. 17(3), 227–246 (1998)

    Article  MATH  Google Scholar 

  24. Thomsen, J.J.: Using Perturbation Methods to Study Slow Effects of Fast, Non-resonant Excitation. Technical University of Denmark, Danish Center for Applied Mathematics and Mechanics, Kgs. Lyngby (1999)

    Google Scholar 

  25. Vidoli, S., Vestroni, F.: Veering phenomena in systems with gyroscopic coupling. J. Appl. Mech. 72(5), 641–647 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunetra Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: System submatrices used in Eq. (36)

Appendix: System submatrices used in Eq. (36)

$$\begin{aligned} \mathbf{M}^{a,b}= & {} V^{a,b} \begin{bmatrix} \mathbf{M}^{C}_n&\mathbf{0}\\ \mathbf{0}&\mathbf{M}^{S}_n \end{bmatrix}^{a,b}; \quad \quad \mathbf{M}_q= \begin{bmatrix} \mathbf{I}&\mathbf{0}\\ \mathbf{0}&\mathbf{I} \end{bmatrix}; \\ \quad \quad \mathbf{K}^{a,b}= & {} V^{a,b} \begin{bmatrix} \mathbf{M}^{C}_n{{\varvec{\Lambda }}}_n^2&\mathbf{0} \\ \mathbf{0}&\mathbf{M}^{S}_n{{\varvec{\Lambda }}}_n^2 \end{bmatrix}^{a,b}; \\ \mathbf{K}_q= & {} \bigg ({\varvec{\omega }}_m^2-m^2{\varOmega }_0^2+ \frac{\vartheta _1a^2}{2}+ \frac{\vartheta _2a^2m^2}{2}\bigg ) \\&\begin{bmatrix} \mathbf{I}&\mathbf{0}\\ \mathbf{0}&\mathbf{I} \end{bmatrix}; \\ \mathbf{L}^{a,b}_{f}= & {} A_\mathrm{d}C^2 \begin{bmatrix} \mathbf{L}^C_{nm}&\mathbf{0}\\ \mathbf{0}&\mathbf{L}^S_{nm} \end{bmatrix}^{a,b}; \\ \mathbf{L}^{a,b}_{s}= & {} {\varLambda } A_\mathrm{d} \begin{bmatrix} \mathbf{L}^C_{mn}&\mathbf{0}\\ \mathbf{0}&\mathbf{L}^S_{mn} \end{bmatrix}^{a,b}; \\ \mathbf{C}^{a,b}= & {} C^2 A_\mathrm{a} \begin{bmatrix} \mathbf{C}^C_{nr}&\mathbf{0} \\ \mathbf{0}&\mathbf{C}^S_{nr} \end{bmatrix}^{a,b}; \\ \mathbf{C}_q= & {} \eta \varpi _m^2 \begin{bmatrix} \mathbf{I}&\mathbf{0}\\ \mathbf{0}&\mathbf{I} \end{bmatrix}; \\ \mathbf{G}_q= & {} \begin{bmatrix} \mathbf{0}&2{\varOmega }_0 m \mathbf{I} \\ -2{\varOmega }_0 m \mathbf{I}&\mathbf{0} \end{bmatrix}; \\ \mathbf{D}_q= & {} \eta {\varOmega }_0 m\varpi _m^2 \begin{bmatrix} \mathbf{0}&\mathbf{I} \\ -\mathbf{I}&\mathbf{0} \end{bmatrix}; \\ \mathbf{N_q} (\mathbf{X}(T_1))= & {} { {\varGamma }}_m \begin{bmatrix} {\chi }_m(T_1)^3&\quad {\chi }_m(T_1){\xi }_m(T_1)^2\\ {\chi }_m(T_1)^2{\varvec{\xi }}_m(T_1)&\quad {\xi }_m(T_1)^3 \end{bmatrix}. \end{aligned}$$

Here, the superscripts C and S, respectively denote the cosine and sine modes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remigius, W.D., Gupta, S. & Sarkar, S. Effect of fast parametric excitation on the instability behaviour of a spinning disc bounded in a compressible fluid-filled enclosure. Nonlinear Dyn 96, 2257–2279 (2019). https://doi.org/10.1007/s11071-019-04919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04919-5

Keywords

Navigation