Nonlinear Dynamics

, Volume 96, Issue 4, pp 2257–2279 | Cite as

Effect of fast parametric excitation on the instability behaviour of a spinning disc bounded in a compressible fluid-filled enclosure

  • W. Dheelibun Remigius
  • Sayan Gupta
  • Sunetra SarkarEmail author
Original Paper


This paper focusses on investigating how high-frequency (fast) excitations affect the aeroelastic instability of a spinning disc immersed in a compressible fluid-filled enclosure. The method of multiple scales is used to recast the governing equations of motion into separate equations for fast and slow motions. The slow motions represent the dynamic behaviour of the non-autonomous coupled system. The stability boundaries of the coupled system are investigated through a bifurcation analysis with respect to the mean disc rotation speed and the forcing amplitude. The study reveals that an increase in the forcing amplitude of the fast parametric excitation results in a corresponding increase in the frequencies and the critical speeds of the coupled disc modes associated with the slow motions. Moreover, it is shown that the aeroelastic stability can be postponed or suppressed due to the stiffening and gyroscopic effects induced by the fast excitations.


Accelerating disc Fluid-filled enclosure Acousto-elastic interaction Fast parametric excitation Hopf bifurcation 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blekhman, I.I.: Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications. World Scientific Publishing Company, Singapore (2000)CrossRefGoogle Scholar
  2. 2.
    Bourkha, R., Belhaq, M.: Effect of fast harmonic excitation on a self-excited motion in van der pol oscillator. Chaos Solitons Fractals 34(2), 621–627 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chung, J., Oh, J.E., Yoo, H.: Non-linear vibration of a flexible spinning disc with angular acceleration. J. Sound Vib. 231(2), 375–391 (2000)CrossRefGoogle Scholar
  4. 4.
    D’Angelo, C., Mote, C.D.: Aerodynamically excited vibration and flutter of a thin disk rotating at supercritical speed. J. Sound Vib. 168(1), 15–30 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Davis, R.B.: Techniques to assess acoustic-structure interaction in liquid rocket engines. Ph.D. thesis, Duke University (2008)Google Scholar
  6. 6.
    Dowell, E.H., Gorman, G.F., Smith, D.A.: Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment. J. Sound Vib. 52(4), 519–542 (1977)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hansen, M.H.: Aeroelasticity and Dynamics of Spinning Disks. Technical University of Denmark, Danish Center for Applied Mathematics and Mechanics, Kgs. Lyngby (1999)zbMATHGoogle Scholar
  8. 8.
    Hansen, M.H.: Effect of high-frequency excitation on natural frequencies of spinning discs. J. Sound Vib. 234(4), 577–589 (2000)CrossRefGoogle Scholar
  9. 9.
    Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory, 2nd edn. Springer, New York (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jana, A., Raman, A.: Nonlinear aeroelastic flutter phenomena of a flexible disk rotating in an unbounded fluid. J. Fluids Struct. 20(7), 993–1006 (2005)CrossRefGoogle Scholar
  11. 11.
    Kang, N., Raman, A.: Aeroelastic flutter mechanisms of a flexible disk rotating in an enclosed compressible fluid. J. Appl. Mech. 71(1), 120–130 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kang, N., Raman, A.: Vibrations and stability of a flexible disk rotating in a gas-filled enclosure—part 1: theoretical study. J. Sound Vib. 296(4), 651–675 (2006)CrossRefGoogle Scholar
  13. 13.
    Louisell, W.H.: Coupled Mode and Parametric Electronics. Wiley, New York (1960)Google Scholar
  14. 14.
    Malhotra, N., Namachchivaya, N.S.: Local bifurcations in the motion of spinning discs. Chaos Solitons Fractals 14(2), 203–226 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Malhotra, N., Namachchivaya, N.S., McDonald, R.J.: Multipulse orbits in the motion of flexible spinning discs. J. Nonlinear Sci. 12(1), 1–26 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Malhotra, N., Namachchivaya, N.S., Whalen, T.: Finite amplitude dynamics of a flexible spinning disk. In: Proceedings of ASME Biennial Conference on Mechanical Vibration and Noise, pp. 239–250 (1995)Google Scholar
  17. 17.
    Merkin, R.D.: Introduction to the Theory of Stability, vol. 24. Springer, New York (1997)Google Scholar
  18. 18.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)zbMATHGoogle Scholar
  19. 19.
    Remigius, W.D., Gupta, S., Sarkar, S.: Bifurcation analysis of an accelerating disc immersed in a bounded compressible medium near principal parametric resonance. Int. J. Non-Linear Mech. 101, 77–85 (2018)CrossRefGoogle Scholar
  20. 20.
    Remigius, W.D., Sarkar, S., Gupta, S.: Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid. J. Sound Vib. 392, 260–279 (2017)CrossRefGoogle Scholar
  21. 21.
    Renshaw, A.A., D’Angelo, C., Mote, C.D.: Aerodynamically excited vibration of a rotating disk. J. Sound Vib. 177(5), 577–590 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tcherniak, D.: The influence of fast excitation on a continuous system. J. Sound Vib. 227(2), 343–360 (1999)CrossRefGoogle Scholar
  23. 23.
    Tcherniak, D., Thomsen, J.J.: Slow effects of fast harmonic excitation for elastic structures. Nonlinear Dyn. 17(3), 227–246 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Thomsen, J.J.: Using Perturbation Methods to Study Slow Effects of Fast, Non-resonant Excitation. Technical University of Denmark, Danish Center for Applied Mathematics and Mechanics, Kgs. Lyngby (1999)Google Scholar
  25. 25.
    Vidoli, S., Vestroni, F.: Veering phenomena in systems with gyroscopic coupling. J. Appl. Mech. 72(5), 641–647 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations