Nonlinear Dynamics

, Volume 96, Issue 4, pp 2241–2256 | Cite as

The influence of friction parameters in a ball-screw energy-harvesting shock absorber

  • L. BowenEmail author
  • J. Vinolas
  • J. L. Olazagoitia
Original Paper


Energy-harvesting shock absorbers (EHSAs) have been introduced in the last decade as a viable technology for improving the performance and durability of electric and/or hybrid vehicles. However, in order to gauge the potential that can be obtained from this technology in different environments, the computational models that are used should behave as close to reality as possible. One of the limiting factors in EHSAs, in terms of recoverable energy, is frictional losses between its moving parts. Depending on the friction losses, the dynamics and efficiency of the system will vary. This paper presents a method of identifying the friction parameters in a ball-screw energy-harvesting shock absorber (BS-EHSA) system for subsequent computational simulation. In addition, it shows qualitative and quantitative results of how these friction parameters could affect the comfort and adhesion of the vehicle, as well as the generated power and energy efficiency of the BS-EHSA.


Multi-objective optimization techniques EHSA Energy harvesting Electromagnetic shock absorber Non-linearities Vehicular dynamics Ride comfort 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Amati, N., Festini, A., Tonolii, A.: Design of electromagnetic shock absorbers for automotive suspensions. Veh. Syst. Dyn. 49(12), 1913–1928 (2011)CrossRefGoogle Scholar
  2. 2.
    Amatia, N., Canova, A., Cavalli, F., Carabelli, S., Festini, A., Tonoli, A., Caviasso, G.: Electromagnetic shock absorbers for automotive suspensions: Electromechanical design. In: ASME 8th Biennial Conference on Engineering Systems Design and Analysis (2006)Google Scholar
  3. 3.
    Benini, C., Gadola, M., Chindamo, D., Uberti, S., Marchesin, F.P., Barbosa, R.S.: The influence of suspension components friction on race car vertical dynamics. Veh. Syst. Dyn. 55(3), 338–350 (2017). CrossRefGoogle Scholar
  4. 4.
    Bowen, L., Vinolas, J., OLazagoitia, J.: Methodology for comparing the functional performance of energy harvesting shock absorbers. Int. J. Appl. Electromagn. Mech. 2017, 545–564 (2017). CrossRefGoogle Scholar
  5. 5.
    Bruni, S., Vinolas, J., Berg, M., Polach, O., Stichel, S.: Modelling of suspension components in a rail vehicle dynamics context. Veh. Syst. Dyn. 49(7), 1021–1072 (2011). CrossRefGoogle Scholar
  6. 6.
    Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011). (Dynamics of Vibro-Impact Systems)CrossRefGoogle Scholar
  7. 7.
    Fang, Z., Guo, X., Xu, L., Zhang, H.: Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber. Adv. Mech. Eng. 5, 943,528 (2013). CrossRefGoogle Scholar
  8. 8.
    Galluzzi, R., Tonoli, A., Amati, N., Curcuruto, G., Conti, P., Greco, G., Nepote, A.: Regenerative shock absorbers and the role of the motion rectifier. In: SAE technical paper. SAE International (2016).
  9. 9.
    Gembicki, F., Haimes, Y.: Approach to performance and sensitivity multiobjective optimization: the goal attainment method. IEEE Trans. Autom. Control 20(6), 769–771 (1975). CrossRefGoogle Scholar
  10. 10.
    Guo, S., Liu, Y., Xu, L., Guo, X., Zuo, L.: Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles. Veh. Syst. Dyn. 54(7), 918–942 (2016)CrossRefGoogle Scholar
  11. 11.
    Iwnicki, S.: Handbook of Railway Vehicle Dynamics. Taylor and Francis Group, Boca Raton (2006)CrossRefGoogle Scholar
  12. 12.
    Kashani, H.: Analytical parametric study of bi-linear hysteretic model of dry friction under harmonic, impulse and random excitations. Nonlinear Dyn. 89(1), 267–279 (2017). CrossRefGoogle Scholar
  13. 13.
    Li, P., Zuo, L.: Influences of the electromagnetic regenerative dampers on the vehicle suspension performance. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 231(3), 383–394 (2016)CrossRefGoogle Scholar
  14. 14.
    Li, Z., Zuo, L., Kuang, J., George, L.: Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater. Struct. 22(2), 025008 (2013)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Zuo, L., Luhrs, G., Lin, L., Qin, Yx: Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests. IEEE Trans. Veh. Technol. 62(3), 1065–1074 (2013)CrossRefGoogle Scholar
  16. 16.
    Lin, X., Bo, Y., Xuexun, G., Jun, Y.: Simulation and performance evaluation of hydraulic transmission electromagnetic energy-regenerative active suspension. In: 2010 Second WRI Global Congress on Intelligent Systems, vol. 3, pp. 58–61 (2010).
  17. 17.
    Liu, Y., Xu, L., Zuo, L.: Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE ASME Trans. Mechatron. 22(5), 1933–1943 (2017)CrossRefGoogle Scholar
  18. 18.
    Maravandi, A., Moallem, M.: Regenerative shock absorber using a two-leg motion conversion mechanism. IEEE ASME Trans. Mechatron. 20(6), 2853–2861 (2015). CrossRefGoogle Scholar
  19. 19.
    Nagode, C., Ahmadian, M., Taherii, S.: Vibration-based energy harvesting systems for on-board applications. In: Joint Rail Conference (2011)Google Scholar
  20. 20.
    Oprea, R.A., Mihailescu, M., Chirila, A.I., Deaconu, I.D.: Design and efficiency of linear electromagnetic shock absorbers. In: 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2012)Google Scholar
  21. 21.
    Peng, M., Guo, X., Zou, J., Zhang, C.: Simulation study on vehicle road performance with hydraulic electromagnetic energy-regenerative shock absorber. In: SAE technical paper. SAE International (2016).
  22. 22.
    Popp, K.: Non-smooth mechanical systems—an overview. Forsch. Ing. 64(9), 223 (1998). CrossRefGoogle Scholar
  23. 23.
    Popp, K., Hinrichs, N., Oestreich, M.: Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sadhana 20(2), 627–654 (1995). MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Sabzehgar, R., Maravandi, A., Moallem, M.: Energy regenerative suspension using an algebraic screw linkage mechanism. IEEE ASME Trans. Mechatron. 19(4), 1251–1259 (2014). CrossRefGoogle Scholar
  25. 25.
    Vidmar, B.J., Feeny, B.F., Shaw, S.W., Haddow, A.G., Geist, B.K., Verhanovitz, N.J.: The effects of coulomb friction on the performance of centrifugal pendulum vibration absorbers. Nonlinear Dyn. 69(1), 589–600 (2012). MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wei, C., Taghavifar, H.: A novel approach to energy harvesting from vehicle suspension system: half-vehicle model. Energy 134, 279–288 (2017). CrossRefGoogle Scholar
  27. 27.
    Xie, X., Wang, Q.: Energy harvesting from a vehicle suspension system. Energy 86, 385–392 (2015). CrossRefGoogle Scholar
  28. 28.
    Xuezheng, J., Wang, J., Yancheng, L., Jianchun, L.: Design and modelling of a novel linear electromagnetic vibration energy harvester. Int. J. Appl. Electromagn. Mech. 46(1), 165–183 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhang, G., Cao, J., Yu, F.: Design of active and energy-regenerative controllers for dc-motor-based suspension. Mechatronics 22(8), 1124–1134 (2012)CrossRefGoogle Scholar
  30. 30.
    Zhang, X., Xu, J., Feng, Z.: Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dyn. 88(2), 937–954 (2017). CrossRefGoogle Scholar
  31. 31.
    Zhang, Y., Chen, H., Guo, K., Zhang, X., Li, S.E.: Electro-hydraulic damper for energy harvesting suspension: modeling, prototyping and experimental validation. Appl. Energy 199, 1–12 (2017). CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Guo, K., Wang, D., Chen, C., Li, X.: Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy 119, 961–970 (2017). CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Zhang, X., Zhan, M., Guo, K., Zhao, F., Liu, Z.: Study on a novel hydraulic pumping regenerative suspension for vehicles. J. Frankl. Inst. 352(2), 485–499 (2015). (Special Issue on Control and Estimation of Electrified vehicles)zbMATHCrossRefGoogle Scholar
  34. 34.
    Zhang, Z., Zhang, X., Chen, W., Rasim, Y., Salman, W., Pan, H., Yuan, Y., Wang, C.: A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energy 178, 177–188 (2016). CrossRefGoogle Scholar
  35. 35.
    Zhu, H., Yang, J., Zhang, Y., Feng, X., Ma, Z.: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dyn. 89(2), 1545–1568 (2017). CrossRefGoogle Scholar
  36. 36.
    Zou, J., Guo, X., Xu, L., Gangfeng, T., Zhang, C., Zhang, J.: Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension. Shock Vib. 2017, 12 (2017). CrossRefGoogle Scholar
  37. 37.
    Zuo, L., Nayfeh, S.: Low order continuous-time filters for approximation of the iso 2631-1 human vibration sensitivity weightings. J. Sound Vib. 265(2), 459–465 (2003). CrossRefGoogle Scholar
  38. 38.
    Zuo, L., Scully, B., Shestani, J., Zhou, Y.: Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct. 19(4), 045003 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Industrial y Automoción - D.I.I.A.Universidad Antonio de NebrijaMadridSpain

Personalised recommendations