Periodic solutions for a dumbbell satellite equation


In this paper, we study the existence of at least two geometrically distinct periodic solutions for a differential equation which models the planar oscillations of a dumbbell satellite under the influence of the gravity field generated by an oblate body, considering the effect of the zonal harmonic parameter \(J_{2}\). And at least one of such two periodic solutions is unstable. The proof is based on the version of the Poincaré–Birkhoff theorem due to Franks. Moreover, we also study the existence and multiplicity of periodic solutions and subharmonic solutions with winding number.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abouelmagd, E.I., Guirao, J.L.G., Hobiny, A., Alzahrani, F.: Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete Contin. Dyn. Syst. Ser. S 8(6), 1047–1054 (2015)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Abouelmagd, E.I., Guirao, J.L.G., Vera, J.A.: Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body. Commun. Nonlinear Sci. Numer. Simul. 20(3), 1057–1069 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Bardin, B.S., Chekina, E.A., Chekin, A.M.: On the stability of a planar resonant rotation of a satellite in an elliptic orbit. Regul. Chaotic Dyn. 20(1), 63–73 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Burov, A.A., Kosenko, I.I., Troger, H.: On periodic motions of an orbital dumbbell-shaped body with a cabin-elevator. Mech. Solids 47(3), 269–284 (2012)

    Article  Google Scholar 

  5. 5.

    Belestky, V.V.: Motion of an artificial satellite about a center of mass. Israel Program for Scientific Translations, Jerusalem (1966)

  6. 6.

    Birkhoff, G.D.: An extension of Poincaré’s last geometric theorem. Acta Math. 47(4), 297–311 (1926)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Brereton, R.C., Modi, V.J.: On the stability of planar librations of a dumb-bell satellite in an elliptic orbit. Aeronaut. J. 70, 1098–1102 (1966)

    Article  Google Scholar 

  8. 8.

    Celletti, A., Sidorenko, V.: Some properties of the dumbbell satellite attitude. Celest. Mech. Dyn. Astron. 101(1–2), 105–126 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Chu, J., Liang, Z., Torres, P.J., Zhou, Z.: Existence and stability of periodic oscillations of a rigid dumbbell satellite around its center of mass. Discrete Contin. Dyn. Syst. Ser. B 22(7), 2669–2685 (2017)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Elipe, A., Palacios, M., Pretka-Ziomek, H.: Equilibria of the two-body problem with rigid dumb-bell satellite. Chaos Solitons Fractals 35, 830–842 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Fernández-Martínez, M., López, M.A., Vera, J.A.: On the dynamics of planar oscillations for a dumbbell satellite in \(J_{2}\) problem. Nonlinear Dyn. 84(1), 143–151 (2016)

    MATH  Article  Google Scholar 

  12. 12.

    Franks, J.: Generalization of Poincaré–Birkhoff theorem. Ann. Math. 128(1), 139–151 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Fonda, A., Sabatini, M., Zanolin, F.: Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré–Birkhoff theorem. Topol. Methods Nonlinear Anal. 40(1), 29–52 (2012)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Krupa, M., Steindl, A., Troger, H.: Stability of relative equilibria. Part II: dumbbell satellites. Meccanica 35, 353–371 (2001)

    MATH  Article  Google Scholar 

  15. 15.

    Guirao, J.L.G., Vera, J.A., Wade, B.A.: On the periodic solutions of a rigid dumbbell satellite in a circular orbit. Astrophys. Space Sci. 346(2), 437–442 (2013)

    MATH  Article  Google Scholar 

  16. 16.

    Guirao, J.L.G., Llibre, J., Vera, J.A.: On the dynamics of the rigid body with a fixed point: periodic orbits and integrability. Nonlinear Dyn. 74(1–2), 327–333 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Marò, S.: Periodic solutions of a forced relativistic pendulum via twist dynamics. Topol. Methods Nonlinear Anal. 42(1), 51–75 (2013)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Nakanishi, K., Kojima, H., Watanabe, T.: Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes. Acta Astronaut. 68(7–8), 1024–1030 (2011)

    Article  Google Scholar 

  19. 19.

    Nuñez, D., Torres, P.J.: Stable odd solutions of some periodic equations modeling satellite motion. J. Math. Anal. Appl. 279(2), 700–709 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Poincaré, H.: Sur un théorème de géométrie. Rend. Circ. Mat. Palermo 33, 375–407 (1912)

    MATH  Article  Google Scholar 

  21. 21.

    Petryshyn, W.V., Yu, Z.S.: On the solvability of an equation describing the periodic motions of a satellite in its elliptic orbit. Nonlinear Anal. 9(9), 969–975 (1985)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Rodnikov, A.V.: Equilibrium positions of a weight on a cable fixed to a dumbbell-shaped space station moving along a circular geocentric orbit. Cosmic Res. 44(1), 58–68 (2006)

    Article  Google Scholar 

  23. 23.

    Schutte, A.D., Udwadia, F.E., Lam, T.: Nonlinear dynamics and control of a dumbbell spacecraft system. In: Proceedings of the 11th Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, American Society of Civil Engineers, Long Beach (2008)

  24. 24.

    Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010)

    Google Scholar 

  25. 25.

    Sanyal, A.K., Shen, J., McClamroch, N.H., Bloch, A.M.: Stability and stabilization of relative equilibria of dumbbell bodies in central gravity. J. Guid. Control Dyn. 28(5), 833–842 (2005)

    Article  Google Scholar 

  26. 26.

    Sanyal, A.K., Shen, J., McClamroch, N.H.: Dynamics and control of an elastic dumbbell spacecraft in a central gravitational field. In: Proceedings of 42nd conference on decision and control, pp 2798–2803 (2003)

  27. 27.

    Vera, J.A.: On the periodic solutions of a rigid dumbbell satellite placed at L4 of the restricted three body problem. Int. J. Non-Linear Mech. 51, 152–156 (2013)

    Article  Google Scholar 

  28. 28.

    Zevin, A.A.: On oscillations of a satellite in the plane of elliptic orbit. Kosmich. Issled XIX, 674–679 (1981)

    Google Scholar 

  29. 29.

    Zevin, A.A., Pinsky, M.A.: Qualitative analysis of periodic oscillations of an earth satellite with magnetic attitude stabilization. Discrete Contin. Dyn. Syst. 6(2), 193–297 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Zlatoustov, V.A., Markeev, A.P.: Stability of planar oscillations of a satellite in an elliptic orbit. Celest. Mech. 7, 31–45 (1973)

    MathSciNet  MATH  Article  Google Scholar 

Download references


We would like to express our great thanks to the referees for their valuable suggestions. We also would like to show our thanks to Professor Jifeng Chu (Shanghai Normal University) for his constant supervision and support. Zaitao Liang was jointly supported by the Key Program of Scientific Research Fund for Young Teachers of Anhui University of Science and Technology (QN2018109). Fangfang Liao was supported by the National Natural Science Foundation of China (Grant No. 11701375) and QingLan project of Jiangsu Province.

Author information



Corresponding author

Correspondence to Zaitao Liang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Liao, F. Periodic solutions for a dumbbell satellite equation. Nonlinear Dyn 95, 2469–2476 (2019).

Download citation


  • Dumbbell satellite
  • Geometrically distinct periodic solutions
  • Unstable
  • Poincaré–Birkhoff theorem

Mathematics Subject Classification

  • 34C25
  • 37C25