Coherence resonance in an autaptic Hodgkin–Huxley neuron with time delay

Original Paper
  • 15 Downloads

Abstract

Autapses, synapses between a neuron and itself, are believed to serve as a regulator of information processing in the nervous system. Noise, as random or unpredictable fluctuations, affects nearly all aspects of nervous function. In this work, we studied the regulatory ability of an autapse on firing behaviors of a Hodgkin–Huxley neuron in response to synaptic-like signals in the presence of noise. For weak subthreshold synaptic input, the autaptic neuron produced the similar firing behavior governed by the noise in case of either determinate or random synaptic input. The critical noise intensity necessary to trigger the spike train slightly was decreased with determinate low-frequency input. Under a strong suprathreshold synaptic current, noise-induced frequency resonance and precise responses mostly occured with a high-frequency determinate input. With a random strong synaptic input, an increase in the autaptic delay led to a resonance-like response, but had no observable effects in cases with a short delay time under a low-frequency input.

Keywords

Coherence resonance Autapse Neuron Time delay Entropy 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant Nos. 11675008, 21434001 and 11447027. HTW acknowledges in addition supports from the Fundamental Research Funds for the Central Universities with Grant No. GK201503025 and Natural Science Basic Research Plan in Shaanxi Province of China with Grant No. 2016JQ1037.

Compliance with ethical standards

Conflict of interests

All the authors declare that there are no any conflict with the publication of this work.

References

  1. 1.
    Van Der Loos, H., Glaser, E.M.: Autapses in neocortex cerebri: synapses between a pyramidal cells axon and its own dendrites. Brain Res. 48, 355–360 (1972)CrossRefGoogle Scholar
  2. 2.
    Karabelas, A.B., Purrura, D.P.: Evidence for autapses in the substantia nigra. Brain Res. 200(2), 467–473 (1980)CrossRefGoogle Scholar
  3. 3.
    Shkolnik-Yarros, E.G.: Neurons and lnterneuronal Connections of the Central Visual System, pp. 154–155. Plenum Press, New York (1971)CrossRefGoogle Scholar
  4. 4.
    Held, H.: Beiträge zur structur der nervenzellen und ihrer Fortsätze, Zweite Abhandlung. Arch Anat Physiol. (Lpz). Anat. Abt. 204–244 (1897)Google Scholar
  5. 5.
    Chan-Palay, V.: The recurrent collaterals of Purkinje cell axons: a correlated study of the rat’s cerebellar cortex with electron microscopy and the Golgi method. Zeitschrift für Anatomie und Entwicklungsgeschichte 134(2), 200–234 (1971)CrossRefGoogle Scholar
  6. 6.
    Scheibel, M.E., Scheibel, A.B.: Inhibition and the Renshaw cell. A structural critique. Brain Behav. Evol. 4(1), 53–93 (1971)CrossRefGoogle Scholar
  7. 7.
    DiFiglia, M., Pasik, P., Paslk, T.: A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res. 114(2), 245–256 (1976)CrossRefGoogle Scholar
  8. 8.
    Tamás, G., Buhl, E.H., Somogyi, P.: Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17(16), 6352–6364 (1997)CrossRefGoogle Scholar
  9. 9.
    Saada, R., Miller, N., Hurwitz, I., et al.: Autaptic excitation elicits persistent activity and a plateau potential in a neuron of known behavioral function. Curr. Biol. 19(6), 479–484 (2009)CrossRefGoogle Scholar
  10. 10.
    Bacci, A., Huguenard, J.R.: Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49(1), 119–130 (2006)CrossRefGoogle Scholar
  11. 11.
    Jiang, M., Yang, M., Yin, L., et al.: Developmental reduction of asynchronous GABA release from neocortical fast-spiking neurons. Cereb. Cortex. 25(1), 258–270 (2015)CrossRefGoogle Scholar
  12. 12.
    Jiang, M., Zhu, J., Liu, Y., et al.: Enhancement of asynchronous release from fast-spiking interneuron in human and rat epileptic neocortex. PLoS Biol. 10(5), e1001324 (2012)CrossRefGoogle Scholar
  13. 13.
    Wang, H.T., Chen, Y.: Firing dynamics of an autaptic neuron. Chin. Phys. B 24(12), 128709 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, H.T., Sun, Y.J., Li, Y.C., et al.: Influence of autapse self-feedback on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J. Theor. Biol. 358, 25–30 (2014)CrossRefGoogle Scholar
  15. 15.
    Wang, H.T., Ma, J., Chen, Y.L., et al.: Effect of an autapse on the firing pattern transition in a bursting neuron. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3242–3254 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, H.T., Wang, L.F., Chen, Y.L., et al.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24(3), 033122 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin–Huxley neuron with delayed feedback. Phys. Rev. E. 85(2), 021917 (2012)CrossRefGoogle Scholar
  18. 18.
    Yuan, Y., Liu, L.W., Liu, Y.J., et al.: Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Nonlinear Dyn. 90, 2893–2902 (2017)CrossRefGoogle Scholar
  19. 19.
    Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sagués, F., Sancho, J.M., García-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79(3), 829–882 (2007)CrossRefGoogle Scholar
  22. 22.
    Borkowski, L.S.: Bistability and resonance in the periodically stimulated Hodgkin–Huxley model with noise. Phys. Rev. E. 83(5), 051901 (2011)CrossRefGoogle Scholar
  23. 23.
    Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78(5), 775–778 (1997)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yao, Y.G., Yi, M., Hou, D.J.: Coherence resonance induced by cross-correlated sine-Wiener noises in the FitzHugh–Nagumo neurons. Int. J. Mod. Phys. B 31(28), 1750204 (2017)CrossRefGoogle Scholar
  25. 25.
    Yao, Y.G., Ma, J.: Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron. Cogn. Neurodyn. (2018).  https://doi.org/10.1007/s11571-018-9475-3 Google Scholar
  26. 26.
    Jothimurugan, R., Thamilmaran, K., Rajasekar, S., et al.: Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dyn. 83(4), 1803–1814 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Collins, J.J., Imhoff, T.T., Grigg, P.: Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol. 76(1), 642–645 (1996)CrossRefGoogle Scholar
  28. 28.
    Hänggi, P.: Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3), 285–290 (2002)CrossRefGoogle Scholar
  29. 29.
    Levin, J.E., Miller, J.P.: Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380(6570), 165–168 (1996)CrossRefGoogle Scholar
  30. 30.
    Wang, C.J., Yang, K.L., Qu, S.X.: Time-delay enhanced coherence resonance in a discrete neuron with noises. Chin. Phys. Lett. 31(8), 080502 (2014)CrossRefGoogle Scholar
  31. 31.
    Wang, C.J., Yang, K.L., Qu, S.X.: Stochastic resonance in a discrete neuron with time delay and two different modulation signals. Phys. Scr. 89, 105001 (2014)CrossRefGoogle Scholar
  32. 32.
    Bolhasani, E., Azizi, Y., Valizadeh, A.: Direct connections assist neurons to detect correlation in small amplitude noises. Front. Comput. Neurosci. 7, 108 (2013)CrossRefGoogle Scholar
  33. 33.
    Bolhasani, E., Valizadeh, A.: Stabilizing synchrony by inhomogeneity. Sci. Rep. 5, 13854 (2015)CrossRefGoogle Scholar
  34. 34.
    Chen, Y., Yu, L.C., Qin, S.M.: Detection of subthreshold pulses for neurons with channel noise. Phys. Rev. E 78(5), 051909 (2008)CrossRefGoogle Scholar
  35. 35.
    Chen, Y.L., Yu, Y.L., Chen, Y.: Reliability of weak signals detection in neurons with noise. Sci. China: Tech. Sci. 59(3), 411–417 (2016)CrossRefGoogle Scholar
  36. 36.
    Chen, Y.L., Zhang, H., Wang, H.T., et al.: The role of coincidence-detector neuron in reliability and precision of subthreshold signal detection in noise. PLoS One 8(2), e56822 (2013)CrossRefGoogle Scholar
  37. 37.
    Cordo, P., Inglits, J.T., Verschueren, S., et al.: Noise in human muscle spindles. Nature 383(6603), 769–770 (1996)CrossRefGoogle Scholar
  38. 38.
    Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509), 33–36 (1995)CrossRefGoogle Scholar
  39. 39.
    Lee, S.G., Kim, S.: Bifurcation analysis of mode-locking structure in a Hodgkin–Huxley neuron under sinusoidal current. Phys. Rev. E. 73(4), 041924 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, H.T., Chen, Y.: Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals. Phys. A. 462, 321–329 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Yilmaz, E., Ozer, M., Baysal, V., et al.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)CrossRefGoogle Scholar
  42. 42.
    Uzun, R.: Influences of autapse and channel blockage on multiple coherence resonance in a single neuron. App. Math. Comput. 35, 203–210 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Uzun, R., Yilmaz, Z., Ozer, M.: Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks. Phys. A 486, 386–396 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Guo, D.Q., Wu, S.D., Chen, M.M., et al.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)CrossRefGoogle Scholar
  45. 45.
    Guo, D.Q., Perc, M., Zhang, Y., et al.: Frequency-difference-dependent stochastic resonance in neural systems. Phys. Rev. E. 96(2), 022415 (2017)CrossRefGoogle Scholar
  46. 46.
    Gianní, M., Liberti, M., Apollonio, F., et al.: Modeling electromagnetic fields detectability in a HH-like neuronal system : stochastic resonance and window behavior. Biol. Cybern. 94(2), 118–127 (2006)CrossRefMATHGoogle Scholar
  47. 47.
    Lu, L.L., Jia, Y., Liu, W.H., et al.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 7628537 (2017)MathSciNetMATHGoogle Scholar
  48. 48.
    Ge, M.Y., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)CrossRefGoogle Scholar
  49. 49.
    Xu, Y., Jia, Y., Ge, M.Y., et al.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)CrossRefGoogle Scholar
  50. 50.
    Wang, L.F., Qiu, K., Jia, Y.: Effects of time delays in a mathematical bone model. Chin. Phys. B 26(3), 030503 (2017)CrossRefGoogle Scholar
  51. 51.
    Yao, Y.G., Deng, H.Y., Ma, C.Z., et al.: Impact of bounded noise and rewiring on the formation and instability of spiral waves in a small-world network of Hodgkin–Huxley neurons. PLoS One 12(1), e0171273 (2017)CrossRefGoogle Scholar
  52. 52.
    Wang, H.T., Wang, L.F., Yu, L.C., et al.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E. 83(2), 021915 (2011)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Connelly, W.M., Lees, G.: Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex. J. Physiol. 588, 2047–2063 (2009)CrossRefGoogle Scholar
  54. 54.
    Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)CrossRefMATHGoogle Scholar
  55. 55.
    Sterratt, D., Graham, B., Gillies, A., et al.: Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  56. 56.
    Mathy, A., Ho, S.S., Davie, J.T., et al.: Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62, 388–399 (2009)CrossRefGoogle Scholar
  57. 57.
    Deleuze, C., Pazienti, A., Bacci, A.: Autaptic self-inhibition of cortical GABAergic neurons: synaptic narcissism or useful introspection? Curr. Opin. Neurobiol. 26, 64–71 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Soft Matter Physics and Its ApplicationsBeihang UniversityBeijingChina
  2. 2.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  3. 3.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations