Skip to main content
Log in

Coherence resonance in an autaptic Hodgkin–Huxley neuron with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Autapses, synapses between a neuron and itself, are believed to serve as a regulator of information processing in the nervous system. Noise, as random or unpredictable fluctuations, affects nearly all aspects of nervous function. In this work, we studied the regulatory ability of an autapse on firing behaviors of a Hodgkin–Huxley neuron in response to synaptic-like signals in the presence of noise. For weak subthreshold synaptic input, the autaptic neuron produced the similar firing behavior governed by the noise in case of either determinate or random synaptic input. The critical noise intensity necessary to trigger the spike train slightly was decreased with determinate low-frequency input. Under a strong suprathreshold synaptic current, noise-induced frequency resonance and precise responses mostly occured with a high-frequency determinate input. With a random strong synaptic input, an increase in the autaptic delay led to a resonance-like response, but had no observable effects in cases with a short delay time under a low-frequency input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Van Der Loos, H., Glaser, E.M.: Autapses in neocortex cerebri: synapses between a pyramidal cells axon and its own dendrites. Brain Res. 48, 355–360 (1972)

    Article  Google Scholar 

  2. Karabelas, A.B., Purrura, D.P.: Evidence for autapses in the substantia nigra. Brain Res. 200(2), 467–473 (1980)

    Article  Google Scholar 

  3. Shkolnik-Yarros, E.G.: Neurons and lnterneuronal Connections of the Central Visual System, pp. 154–155. Plenum Press, New York (1971)

    Book  Google Scholar 

  4. Held, H.: Beiträge zur structur der nervenzellen und ihrer Fortsätze, Zweite Abhandlung. Arch Anat Physiol. (Lpz). Anat. Abt. 204–244 (1897)

  5. Chan-Palay, V.: The recurrent collaterals of Purkinje cell axons: a correlated study of the rat’s cerebellar cortex with electron microscopy and the Golgi method. Zeitschrift für Anatomie und Entwicklungsgeschichte 134(2), 200–234 (1971)

    Article  Google Scholar 

  6. Scheibel, M.E., Scheibel, A.B.: Inhibition and the Renshaw cell. A structural critique. Brain Behav. Evol. 4(1), 53–93 (1971)

    Article  Google Scholar 

  7. DiFiglia, M., Pasik, P., Paslk, T.: A Golgi study of neuronal types in the neostriatum of monkeys. Brain Res. 114(2), 245–256 (1976)

    Article  Google Scholar 

  8. Tamás, G., Buhl, E.H., Somogyi, P.: Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17(16), 6352–6364 (1997)

    Article  Google Scholar 

  9. Saada, R., Miller, N., Hurwitz, I., et al.: Autaptic excitation elicits persistent activity and a plateau potential in a neuron of known behavioral function. Curr. Biol. 19(6), 479–484 (2009)

    Article  Google Scholar 

  10. Bacci, A., Huguenard, J.R.: Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49(1), 119–130 (2006)

    Article  Google Scholar 

  11. Jiang, M., Yang, M., Yin, L., et al.: Developmental reduction of asynchronous GABA release from neocortical fast-spiking neurons. Cereb. Cortex. 25(1), 258–270 (2015)

    Article  Google Scholar 

  12. Jiang, M., Zhu, J., Liu, Y., et al.: Enhancement of asynchronous release from fast-spiking interneuron in human and rat epileptic neocortex. PLoS Biol. 10(5), e1001324 (2012)

    Article  Google Scholar 

  13. Wang, H.T., Chen, Y.: Firing dynamics of an autaptic neuron. Chin. Phys. B 24(12), 128709 (2015)

    Article  Google Scholar 

  14. Wang, H.T., Sun, Y.J., Li, Y.C., et al.: Influence of autapse self-feedback on mode-locking structure of a Hodgkin–Huxley neuron under sinusoidal stimulus. J. Theor. Biol. 358, 25–30 (2014)

    Article  Google Scholar 

  15. Wang, H.T., Ma, J., Chen, Y.L., et al.: Effect of an autapse on the firing pattern transition in a bursting neuron. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3242–3254 (2014)

    Article  MathSciNet  Google Scholar 

  16. Wang, H.T., Wang, L.F., Chen, Y.L., et al.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24(3), 033122 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hashemi, M., Valizadeh, A., Azizi, Y.: Effect of duration of synaptic activity on spike rate of a Hodgkin–Huxley neuron with delayed feedback. Phys. Rev. E. 85(2), 021917 (2012)

    Article  Google Scholar 

  18. Yuan, Y., Liu, L.W., Liu, Y.J., et al.: Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Nonlinear Dyn. 90, 2893–2902 (2017)

    Article  Google Scholar 

  19. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  20. Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  21. Sagués, F., Sancho, J.M., García-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79(3), 829–882 (2007)

    Article  Google Scholar 

  22. Borkowski, L.S.: Bistability and resonance in the periodically stimulated Hodgkin–Huxley model with noise. Phys. Rev. E. 83(5), 051901 (2011)

    Article  Google Scholar 

  23. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78(5), 775–778 (1997)

    Article  MathSciNet  Google Scholar 

  24. Yao, Y.G., Yi, M., Hou, D.J.: Coherence resonance induced by cross-correlated sine-Wiener noises in the FitzHugh–Nagumo neurons. Int. J. Mod. Phys. B 31(28), 1750204 (2017)

    Article  Google Scholar 

  25. Yao, Y.G., Ma, J.: Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron. Cogn. Neurodyn. (2018). https://doi.org/10.1007/s11571-018-9475-3

    Article  Google Scholar 

  26. Jothimurugan, R., Thamilmaran, K., Rajasekar, S., et al.: Multiple resonance and anti-resonance in coupled Duffing oscillators. Nonlinear Dyn. 83(4), 1803–1814 (2016)

    Article  MathSciNet  Google Scholar 

  27. Collins, J.J., Imhoff, T.T., Grigg, P.: Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol. 76(1), 642–645 (1996)

    Article  Google Scholar 

  28. Hänggi, P.: Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3), 285–290 (2002)

    Article  Google Scholar 

  29. Levin, J.E., Miller, J.P.: Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380(6570), 165–168 (1996)

    Article  Google Scholar 

  30. Wang, C.J., Yang, K.L., Qu, S.X.: Time-delay enhanced coherence resonance in a discrete neuron with noises. Chin. Phys. Lett. 31(8), 080502 (2014)

    Article  Google Scholar 

  31. Wang, C.J., Yang, K.L., Qu, S.X.: Stochastic resonance in a discrete neuron with time delay and two different modulation signals. Phys. Scr. 89, 105001 (2014)

    Article  Google Scholar 

  32. Bolhasani, E., Azizi, Y., Valizadeh, A.: Direct connections assist neurons to detect correlation in small amplitude noises. Front. Comput. Neurosci. 7, 108 (2013)

    Article  Google Scholar 

  33. Bolhasani, E., Valizadeh, A.: Stabilizing synchrony by inhomogeneity. Sci. Rep. 5, 13854 (2015)

    Article  Google Scholar 

  34. Chen, Y., Yu, L.C., Qin, S.M.: Detection of subthreshold pulses for neurons with channel noise. Phys. Rev. E 78(5), 051909 (2008)

    Article  Google Scholar 

  35. Chen, Y.L., Yu, Y.L., Chen, Y.: Reliability of weak signals detection in neurons with noise. Sci. China: Tech. Sci. 59(3), 411–417 (2016)

    Article  Google Scholar 

  36. Chen, Y.L., Zhang, H., Wang, H.T., et al.: The role of coincidence-detector neuron in reliability and precision of subthreshold signal detection in noise. PLoS One 8(2), e56822 (2013)

    Article  Google Scholar 

  37. Cordo, P., Inglits, J.T., Verschueren, S., et al.: Noise in human muscle spindles. Nature 383(6603), 769–770 (1996)

    Article  Google Scholar 

  38. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509), 33–36 (1995)

    Article  Google Scholar 

  39. Lee, S.G., Kim, S.: Bifurcation analysis of mode-locking structure in a Hodgkin–Huxley neuron under sinusoidal current. Phys. Rev. E. 73(4), 041924 (2006)

    Article  MathSciNet  Google Scholar 

  40. Wang, H.T., Chen, Y.: Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals. Phys. A. 462, 321–329 (2016)

    Article  MathSciNet  Google Scholar 

  41. Yilmaz, E., Ozer, M., Baysal, V., et al.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Article  Google Scholar 

  42. Uzun, R.: Influences of autapse and channel blockage on multiple coherence resonance in a single neuron. App. Math. Comput. 35, 203–210 (2017)

    Article  MathSciNet  Google Scholar 

  43. Uzun, R., Yilmaz, Z., Ozer, M.: Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks. Phys. A 486, 386–396 (2017)

    Article  MathSciNet  Google Scholar 

  44. Guo, D.Q., Wu, S.D., Chen, M.M., et al.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)

    Article  Google Scholar 

  45. Guo, D.Q., Perc, M., Zhang, Y., et al.: Frequency-difference-dependent stochastic resonance in neural systems. Phys. Rev. E. 96(2), 022415 (2017)

    Article  Google Scholar 

  46. Gianní, M., Liberti, M., Apollonio, F., et al.: Modeling electromagnetic fields detectability in a HH-like neuronal system : stochastic resonance and window behavior. Biol. Cybern. 94(2), 118–127 (2006)

    Article  Google Scholar 

  47. Lu, L.L., Jia, Y., Liu, W.H., et al.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 7628537 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Ge, M.Y., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Article  Google Scholar 

  49. Xu, Y., Jia, Y., Ge, M.Y., et al.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)

    Article  Google Scholar 

  50. Wang, L.F., Qiu, K., Jia, Y.: Effects of time delays in a mathematical bone model. Chin. Phys. B 26(3), 030503 (2017)

    Article  Google Scholar 

  51. Yao, Y.G., Deng, H.Y., Ma, C.Z., et al.: Impact of bounded noise and rewiring on the formation and instability of spiral waves in a small-world network of Hodgkin–Huxley neurons. PLoS One 12(1), e0171273 (2017)

    Article  Google Scholar 

  52. Wang, H.T., Wang, L.F., Yu, L.C., et al.: Response of Morris–Lecar neurons to various stimuli. Phys. Rev. E. 83(2), 021915 (2011)

    Article  Google Scholar 

  53. Connelly, W.M., Lees, G.: Modulation and function of the autaptic connections of layer V fast spiking interneurons in the rat neocortex. J. Physiol. 588, 2047–2063 (2009)

    Article  Google Scholar 

  54. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)

    Book  Google Scholar 

  55. Sterratt, D., Graham, B., Gillies, A., et al.: Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  56. Mathy, A., Ho, S.S., Davie, J.T., et al.: Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62, 388–399 (2009)

    Article  Google Scholar 

  57. Deleuze, C., Pazienti, A., Bacci, A.: Autaptic self-inhibition of cortical GABAergic neurons: synaptic narcissism or useful introspection? Curr. Opin. Neurobiol. 26, 64–71 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China with Grant Nos. 11675008, 21434001 and 11447027. HTW acknowledges in addition supports from the Fundamental Research Funds for the Central Universities with Grant No. GK201503025 and Natural Science Basic Research Plan in Shaanxi Province of China with Grant No. 2016JQ1037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interests

All the authors declare that there are no any conflict with the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, H. & Chen, Y. Coherence resonance in an autaptic Hodgkin–Huxley neuron with time delay. Nonlinear Dyn 94, 141–150 (2018). https://doi.org/10.1007/s11071-018-4349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4349-0

Keywords

Navigation