Skip to main content
Log in

A singular perturbation approach to saturated controller design with application to bounded stabilization of wing rock phenomenon

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a singular perturbation-based approach to design saturated controllers for a class of nonlinear systems and shows its effectiveness in suppressing wing rock phenomenon in aircraft. Approximate dynamic inversion technique is exploited to design a high-gain dynamic controller which enforces time-scale separation in the closed-loop system. The convergence analysis of closed-loop system is done using the framework of contraction theory. Explicit tracking error bounds are derived both in the presence and absence of disturbances in system dynamics. The derived bounds are valid beyond a restrictive range of perturbation parameter, unlike Lyapunov-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angeli, D.: A lyapunov approach to incremental stability properties. IEEE Trans. Autom. Control 47(3), 410–421 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chakrabortty, A., Arcak, M.: Time-scale separation redesigns for stabilization and performance recovery of uncertain nonlinear systems. Automatica 45(1), 34–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, G., Moiola, J.L., Wang, H.O.: Bifurcation control: theories, methods, and applications. Int. J. Bifurc. Chaos 10(3), 511–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Del Vecchio, D., Slotine, J.J.E.: A contraction theory approach to singularly perturbed systems. IEEE Trans. Autom. Control 58(3), 752–757 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Forni, F., Sepulchre, R.: A differential lyapunov framework for contraction analysis. IEEE Trans. Autom. Control 59(3), 614–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guglieri, G., Quagliotti, F.: Analytical and experimental analysis of wing rock. Nonlinear Dyn. 24(2), 129–146 (2001)

    Article  MATH  Google Scholar 

  7. Hovakimyan, E.L.N., Cao, C.: Adaptive dynamic inversion via time-scale separation. In: Proceedings of 45th IEEE Conference Decision and Control, pp. 1075–1080. San Diego (2006)

  8. Hovakimyan, E.L.N., Sasane, A.: Dynamic inversion for nonaffine-in-control systems via time-scale separation. Part i. J. Dyn. Control Syst. 13(4), 451–465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hovakimyan, N., Lavretsky, E., Cao, C.: Dynamic inversion for multivariable non-affine-in-control systems via time-scale separation. Int. J. Control 81(12), 1960–1967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsu, C.-H., Lan, C.E.: Theory of wing rock. J. Aircr. 22(10), 920–924 (1985)

    Article  Google Scholar 

  11. Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  12. Jouffroy, J., Lottin, J.: On the use of contraction theory for the design of nonlinear observers for ocean vehicles. Proc. Am. Control Conf. 4, 2647–2652 (2002)

    Google Scholar 

  13. Kaliora, G., Astolfi, A.: Nonlinear control of feedforward systems with bounded signals. IEEE Trans. Autom. Control. 49, 1975–1990 (2004)

    Article  MATH  Google Scholar 

  14. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersy (2002)

    MATH  Google Scholar 

  15. Kokotovic, P.V., O’Reilly, J., Khalil, H.K.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press Inc, Orlando (1986)

    MATH  Google Scholar 

  16. Kuperman, A., Zhong, Q.-C.: Ude-based linear robust control for a class of nonlinear systems with application to wing rock motion stabilization. Nonlinear Dyn. 81(1–2), 789–799 (2015)

    Article  Google Scholar 

  17. Lohmiller, W., Slotine, J.-J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, J., Lan, C.E.: Control of wing-rock motion of slender delta wings. J. Guidance Control Dyn. 16(2), 225–231 (1993)

    Article  Google Scholar 

  19. Nayfeh, A., Elzebda, J., Mook, D.: Analytical study of the subsonic wing-rock phenomenon for slender delta wings. J. Aircr. 26(9), 805–809 (1989)

    Article  Google Scholar 

  20. Rayguru, M.M., Kar, I.N.: Contraction based stabilization of approximate feedback linearizable systems. In: Proceedings of European Control Conference, pp. 587–592. (2015)

  21. Rayguru, M.M., Kar, I.N.: Contraction-based stabilisation of nonlinear singularly perturbed systems and application to high gain feedback. Int. J. Control 90, 1778–1792 (2016). https://doi.org/10.1080/00207179.2016.1221139

    Article  MathSciNet  MATH  Google Scholar 

  22. Saberi, A., Khalil, H.: Stabilization and regulation of nonlinear singularly perturbed systems-composite control. IEEE Trans. Autom. Control 30(8), 739–747 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sepulchre, R.: Slow peaking and low-gain designs for global stabilization of nonlinear systems. IEEE Trans. Autom. Control. 45, 453–461 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Serajian, R.: Parameters changing influence with different lateral stiffnesses on nonlinear analysis of hunting behavior of a bogie. J. Measurements Eng. 1(4), 195–206 (2013)

    Google Scholar 

  25. Sharma, B., Kar, I.: Adaptive control of wing rock system in uncertain environment using contraction theory. In: American Control Conference, pp. 2963–2968. IEEE (2008)

  26. Sharma, B.B., Kar, I.N.: Adaptive control of wing rock system in uncertain environment using contraction theory. In: Proceedings of American Control Conference, pp. 2963–2968. (2008)

  27. Sharma, B.B., Kar, I.N.: Observer-based synchronization scheme for a class of chaotic systems using contraction theory. Nonlinear Dyn. 63(3), 429–445 (2011)

    Article  MathSciNet  Google Scholar 

  28. Sontag, E.D.: Contractive systems with inputs. In: Willems, J., Hara, S., Ohta, Y., Fujioka, H. (eds.) Perspectives in Mathematical System Theory, Control, and Signal Processing, Series Lecture Notes in Control and Information Sciences, pp. 217–228. Springer, Berlin (2010)

    Google Scholar 

  29. Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Syst. Control Lett. 18, 165–171 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Teel, A.R.: A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41, 1256–1270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Teo, J., How, J.P., Lavretsky, E.: On approximate dynamic inversion and proportional-integral control. In 2009 American Control Conference, pp. 1592–1597. IEEE (2009)

  32. Teo, J., How, J.P.: Equivalence between approximate dynamic inversion and proportional-integral control. In: Proceedings of 47th IEEE Conference Decision and Control, pp. 2179–2183. Cancun, Mexico (2008)

  33. Teo, J., How, J.P., Lavretsky, E.: Proportional-integral controllers for minimum-phase nonaffine-in-control systems. IEEE Trans. Autom. Control 55(6), 1477–1483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, W., Slotine, J.-J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92(1), 38–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, C., Sun, J., Ma, X.: Stabilization bound of singularly perturbed systems subject to actuator saturation. Automatica 49(2), 457–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Younesian, D., Jafari, A.A., Serajian, R.: Effects of the bogie and body inertia on the nonlinear wheel-set hunting recognized by the hopf bifurcation theory. Int. J. Auto Eng. 1(3), 186–196 (2011)

    Google Scholar 

  37. Zamani, M., Tabuada, P.: Backstepping design for incremental stability. IEEE Trans. Autom. Control 56(9), 2184–2189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rayguru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayguru, M.M., Kar, I.N. A singular perturbation approach to saturated controller design with application to bounded stabilization of wing rock phenomenon. Nonlinear Dyn 93, 2263–2272 (2018). https://doi.org/10.1007/s11071-018-4323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4323-x

Keywords

Navigation