Skip to main content
Log in

Adaptive time-varying super-twisting global SMC for projective synchronisation of flexible manipulator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a synchronisation strategy between a controlled master and three-slave two-link flexible manipulators is proposed. Two out of the three slaves are identical with the master, whereas the third one is non-identical. The master and the slave manipulators are modelled by assumed modes and lumped parameter methods, respectively. The 12 states of the master manipulator are synchronised to the 8 states of each slave manipulator. Such projective synchronisation is also not available in the literature. A global sliding mode controller is designed first for the master manipulator to track the desired trajectory. Next, the synchronisation between the master and the slaves is achieved by designing an adaptive time-varying super-twisting global sliding mode controller. The simulation results reveal that the performances of the proposed controller in terms of (i) steady-state error of synchronisation, (ii) synchronisation time and (iii) links deflection are much better than the existing controller proposed in 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Rybus, T., Seweryn, K., Sasiadek, J.Z.: Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC). J. Intell. Robot. Syst. 85, 491–509 (2016)

    Article  Google Scholar 

  2. Hendrick, R.J., Mitchell, C.R., Herrell, S.D., Webster, R.J.: Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int. J. Robot. Res. 34(13), 1559–1572 (2015)

    Article  Google Scholar 

  3. Rout, R., Subudhi, B.: Inverse optimal self-tuning PID control design for an autonomous underwater vehicle. Int. J. Syst. Sci. 7721, 1–9 (2016)

    MATH  Google Scholar 

  4. Subudhi, B., Pradhan, S.K.: A flexible robotic control experiment for teaching nonlinear adaptive control. Int. J. Electr. Eng. Educ. 53, 341–356 (2016)

    Article  Google Scholar 

  5. Kiang, C.T., Spowage, A., Yoong, C.K.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. Theory Appl. 77(1), 187–213 (2015)

    Article  Google Scholar 

  6. Lochan, K., Roy, B.K., Subudhi, B.: A review on two-link flexible manipulators. Annu. Rev. Control 42, 346–367 (2016)

    Article  Google Scholar 

  7. Subudhi, B., Morris, A.S.: Soft computing methods applied to the control of a flexible robot manipulator. Appl. Soft Comput. 9(1), 149–158 (2009)

    Article  Google Scholar 

  8. Pradhan, S.K., Subudhi, B.: Real-time adaptive control of a flexible manipulator using reinforcement learning. IEEE Trans. Autom. Sci. Eng. 9(2), 237–249 (2012)

    Article  Google Scholar 

  9. Pradhan, S.K., Subudhi, B.: Nonlinear adaptive model predictive controller for a flexible manipulator: an experimental study. IEEE Trans. Control Syst. Technol. 22(1754–1768), 1–15 (2014)

    Google Scholar 

  10. Rodriguez-Angeles, A., Nijmeijer, H.: Mutual synchronization of robots via estimated state feedback: a cooperative approach. IEEE Trans. Control Syst. Technol. 12(4), 542–554 (2004)

    Article  Google Scholar 

  11. Shang, W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans. Autom. Sci. Eng. 10(3), 665–673 (2013)

    Article  Google Scholar 

  12. Zhao, D., Zhu, Q.: Position synchronised control of multiple robotic manipulators based on integral sliding mode. Int. J. Syst. Sci. 45, 556–570 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chao, L., Dongya, Z., Xianbo, X.: Force synchronization of multiple robot manipulators with uncertain contact stiffness. In: Proceedings of 34th Chinese Control Conference, pp. 1173–1178 (2015)

  14. Zhao, D., Li, S., Zhu, Q.: Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics. Int. J. Syst. Sci. 7721, 1–14 (2014)

    Google Scholar 

  15. Dou, H., Wang, S.: A boundary control for motion synchronization of a two-manipulator system with a flexible beam. Automatica 50(12), 3088–3099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dou, H., Wang, S.: Robust adaptive motion/force control for motion synchronization of multiple uncertain two-link manipulators. Mech. Mach. Theory 67, 77–93 (2013)

    Article  Google Scholar 

  17. Bouteraa, Y., Ghommam, J., Poisson, G., Derbel, N.: Distributed synchronization control to trajectory tracking of multiple robot manipulators. J. Robot. 2011, 1–10(2011)

  18. Liu, Y.C., Chopra, N.: Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Trans. Robot. 28(1), 268–275 (2012)

    Article  Google Scholar 

  19. Han, Q., Zhao, X., Wen, B.: Synchronization motions of a two-link mechanism with an improved OPCL method. Appl. Math. Mech. 29(12), 1561–1568 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, Q., Zhang, H., Liu, J.: Nonlinear dynamics of controlled synchronizations of manipulator system. Math. Probl. Eng. 2014, 1–9 (2014)

    MathSciNet  Google Scholar 

  21. Qianlei, C., Shurong, L.I., Dongya, Z., Zhao, W.: Finite-time motion/force control for motion synchronization of multiple manipulators. In: Proceedings of the 33rd Chinese Control Conference, pp. 2121–2126 (2014)

  22. Chao, L., Dongya, Z., Xianbo, X.: Force synchronization of multiple robot manipulators: a first study. In: Proceedings of 33rd Chinese Control Conference, pp. 2212–2217 (2014)

  23. Cui, R., Yan, W.: Mutual synchronization of multiple robot manipulators with unknown dynamics. J. Intell. Robot. Syst. 68(2), 105–119 (2012)

    Article  MATH  Google Scholar 

  24. Khoa, L.D., Truong, D.Q., Ahn, K.K.: Synchronization controller for a 3-R planar parallel pneumatic artificial muscle (PAM) robot using modified ANFIS algorithm. Mechatronics 23(4), 462–479 (2013)

    Article  Google Scholar 

  25. Ouyang, P.R., Pano, V.: Position domain synchronization control of multi-degrees of freedom robotic manipulator. J. Dyn. Syst. Meas. Control 136(2), 21017 (2013)

    Article  Google Scholar 

  26. Ardakani, M.M.G., Cho, J.H., Johansson, R., Robertsson, A.: Trajectory generation for assembly tasks via bilateral teleoperation. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 10230–10235 (2014)

  27. Yang, Y., Hua, C., Guan, X.: Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 46(3), 609–619 (2016)

    Article  Google Scholar 

  28. Wang, H.: Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49(3), 755–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehrabian, A.R., Khorasani, K.: Constrained distributed cooperative synchronization and reconfigurable control of heterogeneous networked Euler–Lagrange multi-agent systems. Inf. Sci. (Ny) 370–371(5), 578–597 (2016)

    Article  Google Scholar 

  30. Montano, A., Suarez, R.: Coordination of several robots based on temporal synchronization. Robot. Comput. Integr. Manuf. 42, 73–85 (2016)

    Article  Google Scholar 

  31. Rodriguez-Angeles, A., Nijmeijer, H.: Synchronizing tracking control for flexible joint robots via estimated state feedback. Trans. ASME 126(1), 162–172 (2004)

    Article  Google Scholar 

  32. Lochan, K., Roy, B.K., Subudhi, B.: Generalized projective synchronization between controlled master and multiple slave TLFMs with modified adaptive SMC. Trans. Inst. Meas. Control 9, 1–23 (2016)

    Google Scholar 

  33. Yang, Y., Hua, C., Li, J., Guan, X.: Fixed-time coordination control for bilateral telerobotics system with asymmetric time-varying delays. J. Intell. Robot. Syst. 86, 447–466 (2016)

    Article  Google Scholar 

  34. Hashemzadeh, F., Hassanzadeh, I., Tavakoli, M., Alizadeh, G.: Adaptive control for state synchronization of nonlinear haptic telerobotic systems with asymmetric varying time delays. J. Intell. Robot. Syst. Theory Appl. 68(3–4), 245–259 (2012)

    Article  MATH  Google Scholar 

  35. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, D., Li, S., Zhu, Q.: A new TSMC prototype robust nonlinear task space control of a 6 DOF parallel robotic manipulator. Int. J. Control Autom. Syst. 8(6), 1189–1197 (2010)

    Article  Google Scholar 

  37. Su, Y., Sun, D., Ren, L., Mills, J.K.: Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators. IEEE Trans. Robot. 22(1), 202–207 (2006)

    Article  Google Scholar 

  38. Shang, W.W., Cong, S.A., Zhang, Y.X., Liang, Y.Y.: Active joint synchronization control for a 2-DOF redundantly actuated parallel manipulator. IEEE Trans. Control Syst. Technol. 17(2), 416–423 (2009)

    Article  Google Scholar 

  39. Zhao, D., Li, S., Gao, F.: Finite time position synchronised control for parallel manipulators using fast terminal sliding mode. Int. J. Syst. Sci. 40(8), 829–843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, L.B., Sun, L.L., Zhang, S.Z., Yang, Q.Q.: Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control. ISA Trans. 58, 635–649 (2015)

    Article  Google Scholar 

  41. Zao, D., Li, S., Gao, F., Zhu, Q.: Robust adaptive terminal sliding mode-based synchronised position control for multiple motion axes systems. IET Control Theory Appl. 3(3), 136–150 (2009)

    Article  MathSciNet  Google Scholar 

  42. Zhao, D., Zou, T., Li, S., Zhu, Q.: Adaptive backstepping sliding mode control for leader-follower multi-agent systems. IET Control Theory Appl. 8(6), 1109–1117 (2012)

    Article  MathSciNet  Google Scholar 

  43. Zhao, D., Li, C., Zhu, Q.: Low-pass-filter-based position synchronization sliding mode control for multiple robotic manipulator systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225, 1136–1148 (2011)

    Article  Google Scholar 

  44. Yu, W.S., Weng, C.H.: \(H_{\infty }\) tracking adaptive fuzzy integral sliding mode control for parallel manipulators. Fuzzy Sets Syst. 248, 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ding, S., Wang, J., Zheng, W.X.: Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Trans. Ind. Electron. 62(9), 5899–5909 (2015)

    Article  Google Scholar 

  46. Xu, S., Chen, C., Wu, Z.: Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans. Ind. Electron. 62(6), 3906–3913 (2015)

    Google Scholar 

  47. Nasiri, A., Kiong Nguang, S., Swain, A.: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties. J. Frankl. Inst. 351(4), 2048–2061 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Karandikar, D., Bandyopadhyay, B.: Sliding mode control of single link flexible manipulator. In: Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms, 19–22 Jan., Goa, India, pp. 712–717 (2010)

  49. Mujumdar, A., Kurode, S., Tamhane, B.: Control of two link flexible manipulator using higher order sliding modes and disturbance estimation. IFAC Proc. Vol. 47, 95–102 (2014)

    Article  Google Scholar 

  50. Liu, J., Luo, W., Yang, X., Ligang, W.: Robust model-based fault diagnosis for PEM fuel cell air-feed system. IEEE Trans. Ind. Electron. 63(5), 3261–3270 (2016)

    Article  Google Scholar 

  51. Liu, J., Vazquez, S., Ligang, W., Marquez, A., Gao, H., Franquelo, L.G.: Extended state observer-based sliding-mode control for three-phase power converters. IEEE Trans. Ind. Electron. 64(1), 22–31 (2016)

    Article  Google Scholar 

  52. Mobayen, S., Tchier, F.: Design of an adaptive chattering avoidance global sliding mode tracker for uncertain non-linear time-varying systems. Trans. Inst. Meas. Control 39, 1547–1558 (2016)

    Article  Google Scholar 

  53. Mobayen, S.: A novel global sliding mode control based on exponential reaching law for a class of underactuated systems with external disturbances. J. Comput. Nonlinear Dyn. 11(2), 21011 (2015)

    Article  MathSciNet  Google Scholar 

  54. Lochan, K., Roy, B.K., Subudhi, B.: Robust tip trajectory synchronisation between assumed modes modelled two-link flexible manipulators using second-order PID terminal SMC. Robot. Auton. Syst. 97, 108–124 (2017)

    Article  Google Scholar 

  55. Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)

    Article  MATH  Google Scholar 

  56. Tran, X.T., Kang, H.J.: Adaptive hybrid high-order terminal sliding mode control of MIMO uncertain nonlinear systems and its application to robot manipulators. Int. J. Precis. Eng. Manuf. 16(2), 255–266 (2015)

    Article  Google Scholar 

  57. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation, Control Engineering. Springer, Birkhauser (2014)

    Book  Google Scholar 

  58. Mobayen, S., Baleanu, D.: Stability analysis and controller design for the performance improvement of disturbed nonlinear systems using adaptive global sliding mode control approach. Nonlinear Dyn. 83(3), 1557–1565 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lochan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lochan, K., Singh, J.P., Roy, B.K. et al. Adaptive time-varying super-twisting global SMC for projective synchronisation of flexible manipulator. Nonlinear Dyn 93, 2071–2088 (2018). https://doi.org/10.1007/s11071-018-4308-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4308-9

Keywords

Navigation