Skip to main content
Log in

Modeling of the mode dynamics generated by Madison Symmetric Torus machine utilizing a modified sine-Gordon equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new dynamic model is presented for the experimental data generated by the Madison Symmetric Torus (MST) machine. The model is based on a modified sine-Gordon (SG) dynamic equation. The modified sine-Gordon equation model effectively captures the behavior of the slinky mode in reversed-field pinch experiments. In addition, this paper demonstrates how the derived model accurately describes the behavior of the localized magnetohydrodynamic mode (slinky mode) that appears in reversed-field pinch toroidal magnetic confinement systems. The modified SG equation model is solved analytically by using the perturbation method. The resulting model is fit to match a variety of experimental results in the MST reversed-field pinch experiment. The efficacy of the newly developed model in effectively representing the slinky mode is verified by comparing obtained analytical solution to experimentally measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ebraheem, H.K., Shohet, J.L., Scott, A.C.: Mode locking in reversed-field pinch experiments. Phys. Rev. Lett. 88, 235003 (2002)

    Article  Google Scholar 

  2. Shohet, J.L., Barmish, B.R., Ebraheem, H.K., Scott, A.C.: The sine-Gordon equation in reversed-field pinch experiments. Phys. Plasmas 11, 3887 (2004)

    Article  Google Scholar 

  3. Shohet, J.L.: The sine-Gordon equation in toroidal magnetic-fusion experiments. Eur. Phys. J. Special Topics 147, 191–207 (2007)

    Article  Google Scholar 

  4. Yagi, Y., Koguchi, H., Nilsson, J.-A.B., Bolzonella, T., Zanca, P., Sekine, S., Osakabe, K., Sakakita, H.: Phase and wall-locked modes found in a large reversed-field pinch machine. Jpn. J. Appl. Phys. 38, L780 (19990)

  5. Hansen, A.K.: Kinematics of nonlinearly interacting MHD instabilities in a plasma. Ph.D. Thesis, University of Wisconsin -Madison (2000)

  6. Hansen, A.K., Almagri, A.F., Den Hartog, D.J., Prager, S.C., Sarff, J.S.: Locking multiple resonant mode structures in the reversed-field pinch. Phys. Plasmas 5, 2942 (1998)

    Article  Google Scholar 

  7. Hegna, C.C.: Nonlinear tearing mode interactions and mode locking in reversed-field pinches. Phys. Plasmas 3, 4646 (1996)

    Article  Google Scholar 

  8. Fitzpatrick, R.: Formation and locking of the slinky mode in reversed field pinches. Phys. Plasmas 6, 1168 (1999)

    Article  Google Scholar 

  9. Tamano, T., Bard, W.D., Cheng, C., Kondoh, Y., Haye, R.J.L., Lee, P.S., Saito, M., Schaffer, M.J., Taylor, P.L.: Observation of a new toroidally localized kink mode and its role in reverse-field-Pinch plasmas. Phys. Rev. Lett. 59, 1444 (1987)

    Article  Google Scholar 

  10. Sarff, J.S., Assadi, S., Almagri, A.F., Cekic, M., Den Hartog, D.J., Fiksel, G., Hokin, S.A., Ji, H., Prager, S.C., Shen, W., Sidikman, K.L., Stoneking, M.R.: Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus. Phys. Fluids B 5, 2540 (1993)

    Article  Google Scholar 

  11. Bodin, H.A.B.: Reversed Field Pinch plasma. Nucl. Fusion 30, 1717 (1990)

    Article  Google Scholar 

  12. Ho, Y.L., Prager, S.C., Schnack, D.D.: Nonlinear behavior of the reversed field pinch with nonideal boundary conditions. Phys. Rev. Lett. 62, 1504 (1989)

    Article  Google Scholar 

  13. Almagri, A. F.: The effects of magnetic field errors on reversed-field pinch plasmas, Ph.D. thesis, University of Wisconsin-Madison (1990)

  14. White, R., Fitzpatrick, R.: Effect of rotation and velocity shear on tearing layer stability in tokamak plasmas. Phys. Plasmas 22, (2015)

  15. Fitzpatrick, R.: Phase locking of multi-helicity neoclassical tearing modes in Tokomak plasmas. Phys. Plasmas 22 (2015)

  16. Xu Tao, Hu, Xi-Wei, Qi-Ming, Hu, Qing-Quan, Yu.: Locking of tearing modes by the error field. Chin. Phys. Lett. 22, 9 (2011)

    Google Scholar 

  17. Ivanov, N.V., Kakurin, A.M.: Locking of Small Magnetic Islands by Error Field in T-10 Tokamak. In: 38th EPS Conference on Plasma Physics (2011)

  18. Fitzpatrick, R.: Linear and nonlinear response of a rotating tokomak plasma to a resonant error-field. Phys. Plasmas 21, (2014)

  19. Scott, A.C.: Nonlinear Science: Emergence and Dynamics of Coherent Structures. Oxford University Press, Oxford (2006)

    Google Scholar 

  20. Scott, A.C.: Encyclopedia of Nonlinear Science. Taylor and Francis Group, New York (2005)

    MATH  Google Scholar 

  21. Remoissenet, M.: Waves Called Solitons, 3rd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  22. Almagri, A.F., Assadi, S., Prager, S.C., Sarff, J.S., Kerst, D.W.: Locked modes and magnetic field errors in the Madison Symmetric Torus. Phys. Fluids B 4, 4080 (1992)

    Article  Google Scholar 

  23. McLaughlin, D.W., Scott, A.C.: Perturbation analysis of fluxon dynamics. Phys. Rev. A 18, 1652 (1978)

    Article  Google Scholar 

  24. Keener, J.P., Mc Laughlin, D.W.: Solitons under perturbations. Phys. Rev. A 16, 777 (1977)

    Article  MathSciNet  Google Scholar 

  25. Whitham, G.B.: Linear and Nonlinear Waves. Wiley Inter-Science, New York (1974)

    MATH  Google Scholar 

  26. Nayfeh, A.H.: Introduction to Perturbation Techniques. John Wiley & Sons, Hoboken (1981)

    MATH  Google Scholar 

  27. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1991)

    MATH  Google Scholar 

  28. Ho, Y.L., Prager, S.C.: Stability of a reversed field pinch with resistive and distant boundaries. Phys. Fluids 31, 1673 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. C. Prager, and A. F. Almagri from the MST scientific research group at University of Wisconsin-Madison for providing the experimental data taken at MST.

Funding

Funding was provided by Public Authority of Applied Education and Training (Grant No. TS16-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar J. Alkhateeb.

Additional information

This work is supported and funded by the Public Authority of Applied Education and Training, Research Project No. (TS-16-11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebraheem, H.K., Alkhateeb, N.J. & Sultan, E.K. Modeling of the mode dynamics generated by Madison Symmetric Torus machine utilizing a modified sine-Gordon equation. Nonlinear Dyn 93, 1989–2001 (2018). https://doi.org/10.1007/s11071-018-4302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4302-2

Keywords

Navigation