Skip to main content
Log in

Modeling and dynamic analysis of bolted joined cylindrical shell

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on Sanders shell theory, modeling and dynamic analysis of bolted joined cylindrical shell were studied in this paper. When subjected to external excitations, contact state such as stick, slip and separation may occur at those locations of bolts. Considering these three contact states, an analytical model of cylindrical shell with a piecewise-linear boundary was established for the bolted joined cylindrical shell. First, the model was verified by the simplified line system, and the effects of stiffness in connecting interface and the number of bolts on natural frequency and mode shape were investigated. Then, through the response under instantaneous excitation, damping characteristic of the system was proved which is caused by the friction model. Last, the effects of external load frequency, response location, excitation amplitude and connecting parameters including stiffness and preload were numerically investigated and fully explained by 3-D frequency spectrum. The results indicated that periodic motion, times periodic motion and even chaotic motion were observed based on different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

u,v,w :

Displacement in the x, \(\theta \), z directions

H :

Thickness of the shell

L :

Length of the shell

R :

Radius of the shell

\(\rho \) :

Mass density

\(\mu \) :

Poisson’s ratio

E :

Young’s modulus

\(k_u ,k_v ,k_w ,k_\theta \) :

Stiffness of axial, circumferential, radial, rotational spring

\(N_\mathrm{B} \) :

Number of bolts

\(v_c , w_c \) :

Displacement of damper in the \(\theta \), z direction

\({\tilde{u}},{\tilde{v}},{\tilde{w}}\) :

Dimensionless displacement in the x, \(\theta \), z direction

\({\tilde{l}}\) :

Dimensionless length of the shell

\({\tilde{h}}\) :

Dimensionless thickness of the shell

\({\tilde{\omega }}\) :

Dimensionless frequency

\({\tilde{t}}\) :

Dimensionless time

\(\xi \) :

Dimensionless scale in the x direction

\({\tilde{k}}_u ,{\tilde{k}}_v ,{\tilde{k}}_w ,{\tilde{k}}_\theta \) :

Dimensionless stiffness of axial, circumferential, radial, rotational spring

F :

The amplitude of the external load

n :

The circumferential wave number

\(A_n ,B_n ,C_n \) :

The amplitude parameters of displacement

NT:

The number of terms for orthogonal polynomials

\({{\varvec{U}}}_{\theta _s } ,{{\varvec{V}}}_{\theta _s } ,{{\varvec{W}}}_{\theta _s } \) :

The generalized vector of modal functions for the location \((\xi =0,\theta =\theta _S )\)

\(u_{\theta _s } ,v_{\theta _s } ,w_{\theta _s } \) :

the displacement the location \((\xi =0,\theta =\theta _S )\)

M, C, K :

Mass matrix, damping matrix, stiffness matrix

\({{\varvec{F}}}_f \) :

The generalized vector of the external load

\({{\varvec{F}}}_\mathrm{bnon} \) :

The generalized vector of the nonlinear contact force

\({{\varvec{K}}}_\mathrm{bolt} \) :

Stiffness matrix of bolt joints in the simplified linear model

\(N_\mathrm{axial} \) :

The normal force on the contact surface

\(f_\mathrm{ax} \) :

The axial force on the contact surface

\(f_\mathrm{tan} \) :

The circumferential force on the contact surface

\(f_\mathrm{rad} \) :

The radial force on the contact surface

M :

The bending moment on the contact surface

\(F_{\mathrm{pre},\theta _s } \) :

The preload of bolts at \((\xi =0,\theta =\theta _S )\)

References

  1. Qatu, M.S.: Recent research advances in the dynamic behavior of shells: 1989–2000, Part 2: homogeneous shells. Appl. Mech. Rev. 55, 415–434 (2002)

    Article  Google Scholar 

  2. Qatu, M.S.: Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: laminated composite shells. Appl. Mech. Rev. 55, 325–350 (2002)

    Article  Google Scholar 

  3. Qatu, M.S., Sullivan, R.W., Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93, 14–31 (2010)

    Article  Google Scholar 

  4. Thai, H.T., Kim, S.E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)

    Article  Google Scholar 

  5. Farshidianfar, A., Oliazadeh, P.: Free vibration analysis of circular cylindrical shells: comparison of different shell theories. Int. J. Mech. Appl. 2(5), 74–80 (2012)

    Google Scholar 

  6. Lee, H.W., Kwak, M.K.: Free vibration analysis of a circular cylindrical shell using the Rayleigh-Ritz method and comparison of different shell theories. J. Sound Vib. 353, 344–377 (2015)

    Article  Google Scholar 

  7. Amabili, M.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56, 511–520 (2003)

    Article  Google Scholar 

  8. Alijani, F., Amabili, M.: Non-linear vibrations of shells: a literature review from 2003 to 2013. Int. J. Non-linear Mech. 58, 233–257 (2014)

    Article  Google Scholar 

  9. Wang, Y.Q., Guo, X.H., Li, Y.G., Li, J.: Nonlinear traveling wave vibration of a circular cylindrical shell subjected to a moving concentrated harmonic force. J. Sound Vib. 329, 338–352 (2010)

    Article  Google Scholar 

  10. Wang, Y.Q., Liang, L., Guo, X.H., Li, J., Liu, J., Liu, P.: Nonlinear vibration response and bifurcation of circular cylindrical shells under traveling concentrated harmonic excitation. Acta Mech. Solida Sin. 26, 277–291 (2013)

    Article  Google Scholar 

  11. Wang, Y.Q., Liang, L., Guo, X.H.: Internal resonance of axially moving laminated circular cylindrical shells. J. Sound Vib. 332, 6434–6450 (2013)

    Article  Google Scholar 

  12. Jin, G.Y., Yang, C.M., Liu, Z.G., Gao, S.Y., Zhang, C.Y.: A unified method for the vibration and damping analysis of constrained layer damping cylindrical shells with arbitrary boundary conditions. Compos. Struct. 130, 124–142 (2015)

    Article  Google Scholar 

  13. Jin, G.Y., Ye, T.J., Chen, Y.H., Su, Z., Yan, Y.Q.: An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions. Compos. Struct. 106, 114–127 (2013)

    Article  Google Scholar 

  14. Dai, L., Yang, T.J., Li, W.L., Du, J., Jin, G.Y.: Dynamic analysis of circular cylindrical shells with general boundary conditions using modified fourier series method. J. Vib. Acoust. 134, 1313–1320 (2012)

    Article  Google Scholar 

  15. Chen, Y.H., Jin, G.Y., Liu, Z.G.: Free vibration analysis of circular cylindrical shell with non-uniform elastic boundary constraints. Int. J. Mech. Sci. 74, 120–132 (2013)

    Article  Google Scholar 

  16. Sun, S.P., Cao, D.Q., Han, Q.K.: Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method. Int. J. Mech. Sci. 68(2), 180–189 (2013)

    Article  Google Scholar 

  17. Wu, S.H., Qu, Y.G., Hua, H.X.: Vibrations characteristics of joined cylindrical-spherical shell with elastic-support boundary conditions. J. Mech. Sci. Technol. 27(5), 1265–1272 (2013)

    Article  Google Scholar 

  18. Caresta, M., Kessissoglou, N.J.: Free vibrational characteristics of isotropic coupled cylindrical-conical shells. J. Sound Vib. 329(6), 733–751 (2010)

    Article  Google Scholar 

  19. Lee, J.: Free vibration analysis of joined spherical-cylindrical shells by matched Fourier-Chebyshev expansions. Int. J. Mech. Sci. 122, 53–62 (2016)

    Article  Google Scholar 

  20. Zhang, D.Y., Fu, J.W., Zhang, Q.C., Hong, J.: An effective numerical method for calculating nonlinear dynamics of structures with dry friction: application to predict the vibration response of blades with underplatform dampers. Nonlinear Dyn. 88, 223–237 (2017)

    Article  Google Scholar 

  21. Chen, J.J., Yang, B.D., Menq, C.H.: Periodic forced response of structures having three-dimensional frictional constraints. J. Sound Vib. 229(4), 775–792 (2000)

    Article  Google Scholar 

  22. Yang, B.D., Menq, C.H.: Characterization of 3d contact kinematics and prediction of resonant response of structures having 3D frictional constraint. J. Sound Vib. 217(5), 909–925 (1998)

    Article  Google Scholar 

  23. Song, Y., Hartwigsen, C.J., Mcfarland, D.M., Vakakis, A.F., Bergman, L.A.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273(1–2), 249–276 (2004)

    Article  Google Scholar 

  24. Kim, J., Yoon, J.C., Kang, B.S.: Finite element analysis and modeling of structure with bolted joints. Appl. Math. Model. 31(5), 895–911 (2007)

    Article  MATH  Google Scholar 

  25. Luan, Y., Guan, Z.Q., Cheng, G.D., Liu, S.: A simplified nonlinear dynamic model for the analysis of pipe structures with bolted flange joints. J. Sound Vib. 331(331), 325–344 (2012)

    Article  Google Scholar 

  26. Liu, S., Ma, Y., Zhang, D., et al.: Studies on dynamic characteristics of the joint in the aero-engine rotor system. Mech. Syst. Signal Process. 29(5), 120–136 (2012)

    Google Scholar 

  27. Qin, Z.Y., Yan, S.Z., Chu, F.L.: Dynamic analysis of clamp band joint system subjected to axial vibration. J. Sound Vib. 329(21), 4486–4500 (2010)

    Article  Google Scholar 

  28. Qin, Z.Y., Yan, S.Z., Chu, F.L.: Dynamic characteristics of launch vehicle and spacecraft connected by clamp band. J. Sound Vib. 330(10), 2161–2173 (2011)

    Article  Google Scholar 

  29. Qin, Z.Y., Han, Q.K., Chu, F.L.: Analytical model of bolted disk-drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. C-J. Mech. 228(4), 646–663 (2014)

    Article  Google Scholar 

  30. Qin, Z.Y., Cui, D.L., Yan, S.Z., Chu, F.L.: Application of 2D finite element model for nonlinear dynamic analysis of clamp band joint. J. Vib. Control 24, 1–8 (2016)

    Google Scholar 

  31. Qin, Z.Y., Han, Q.K., Chu, F.L.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2015)

    Article  Google Scholar 

  32. Heller, L., Foltete, E., Piranda, J.: Experimental identification of nonlinear dynamic properties of built-up structures. J. Sound Vib. 327(1–2), 183–196 (2009)

    Article  Google Scholar 

  33. Hartwigsen, C.J., Song, Y., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experimental study of non-linear effects in a typical shear lap joint configuration. J. Sound Vib. 277(1–2), 327–351 (2004)

    Article  Google Scholar 

  34. Ma, X., Bergman, L., Vakakis, A.: Identification of bolted joints through laser vibrometry. J. Sound Vib. 246(3), 441–460 (2001)

    Article  Google Scholar 

  35. Deng, H., Li, F., Cai, Q., et al.: Experimental and numerical analysis on the slope change joint of a quartet-steel-tube-column transmission tower. Thin-Wall Struct. 119, 572–585 (2017)

    Article  Google Scholar 

  36. Pavlović, M., Heistermann, C., Veljković, M., et al.: Connections in towers for wind converters, part I: evaluation of down-scaled experiments. J. Constr. Steel Res. 115, 445–457 (2015)

    Article  Google Scholar 

  37. Pavlović, M., Heistermann, C., Veljković, M., et al.: Connections in towers for wind converters, part II: the friction connection behaviour. J. Constr. Steel Res. 115, 458–466 (2015)

    Article  Google Scholar 

  38. Jafari, A.A., Bagheri, M.: Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods. Thin-Wall Struct. 44, 82–90 (2006)

    Article  Google Scholar 

  39. He, S., Zhao, Y.: Sanders’ mid-long cylindrical shell theory and its application to ocean engineering structures. J. Mar. Sci. Appl. 11, 98–105 (2012)

    Article  Google Scholar 

  40. Iwan, W.D.: The steady-state response of a two-degree-of-freedom bilinear hysteretic system. J. Appl. Mech. 32(1), 151–156 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Y.: An analytical solution for periodic response of elastic-friction damped systems. J. Sound Vib. 189(3), 299–313 (1996)

    Article  Google Scholar 

  42. Huang, C.T., Kuo, S.Y.: Drift response of bilinear hysteretic systems under two-frequency excitations. Int. J. Non-linear Mech. 41(8), 888–904 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The project was supported by the Fundamental Research Funds for the Central Universities (Nos. N160306004 and N160313001), the China Natural Science Funds (No. 51575093) and Liaoning Province Natural Science Funds (No. 2015020153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Li.

Ethics declarations

Conflicts of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendices

Appendix A

\(\psi _1^u \left( \xi \right) , \quad \psi _1^v \left( \xi \right) \) and \(\psi _1^w \left( \xi \right) \) are given as the first terms of the polynomials in the process of generating characteristic orthogonal polynomials \(\varphi _i^u \left( \xi \right) \), \(\varphi _i^v \left( \xi \right) \) and \(\varphi _i^w \left( \xi \right) \) using Gram–Schmidt method and they are satisfied according to boundary condition. \(\psi _1^u \left( \xi \right) \) is applied to generate \(\varphi _i^u \left( \xi \right) \) as an example.

$$\begin{aligned} \psi _2^u \left( \xi \right)= & {} \left( {\xi -B_1^u } \right) \psi _1^u \left( \xi \right) \\ B_1^u= & {} \frac{\int _0^1 {\xi \left[ {\psi _1^u \left( \xi \right) } \right] ^{2}\hbox {d}\xi } }{\int _0^1 {\left[ {\psi _1^u \left( \xi \right) } \right] ^{2}\hbox {d}\xi } }\\ \psi _{k+1}^u \left( \xi \right)= & {} \left( {\xi -B_k^u } \right) \psi _k^u \left( \xi \right) -C_k \psi _{k-1}^u \left( \xi \right) , k\ge 2\\ B_k^u= & {} \frac{\int _0^1 {\xi \left[ {\psi _k^u \left( \xi \right) } \right] ^{2}\hbox {d}\xi } }{\int _0^1 {\left[ {\psi _k^u \left( \xi \right) } \right] ^{2}\hbox {d}\xi } },\nonumber \\ C_k= & {} \frac{\int _0^1 {\xi \psi _k^u \left( \xi \right) \psi _{k-1}^u \left( \xi \right) \hbox {d}\xi } }{\int _0^1 {\left[ {\psi _{k-1}^u \left( \xi \right) } \right] ^{2}\hbox {d}\xi } }\\ \varphi _k^u \left( \xi \right)= & {} \frac{\psi _k^u \left( \xi \right) }{\int _0^1 {\left[ {\psi _k^u \left( \xi \right) } \right] ^{2}\hbox {d}\xi } } \end{aligned}$$

It should be noted that the polynomials constructed satisfy the orthogonality condition

$$\begin{aligned} \int _0^1 {\xi \varphi _k^u \left( \xi \right) \varphi _l^u \left( \xi \right) \hbox {d}\xi } =\left\{ {\begin{array}{l} 0,k\ne l \\ 1,k=l \\ \end{array}} \right. \end{aligned}$$

The same operation can be done for \(\psi _1^v \left( \xi \right) \) and \(\psi _1^w \left( \xi \right) \).

Appendix B

$$\begin{aligned} {{\varvec{M}}}_1= & {} \int _0^1 {\int _0^{2{\uppi }} {\left[ {{\tilde{l}}^{2}{{\varvec{UU}}}^{\mathrm{T}}} \right] } } \hbox {d}\xi \hbox {d}\theta ,{{\varvec{M}}}_2\\= & {} \int _0^1 {\int _0^{2{\pi }} {\left[ {{{\varvec{VV}}}^{\mathrm{T}}} \right] } } d\xi d\theta ,\\ M_3= & {} \int _0^1 {\int _0^{2{\uppi }} {\left[ {{\tilde{h}}^{2}{{\varvec{WW}}}^{\mathrm{T}}} \right] } } \hbox {d}\xi \hbox {d}\theta \\ {{\varvec{K}}}_1= & {} \int _0^1 \int _{0}^{2\pi } \left[ \frac{\partial {{\varvec{U}}}}{\partial \xi } \frac{\partial {{\varvec{U}}}^{\mathrm{T}}}{\partial \xi }+\frac{\left( {1-\mu } \right) {\tilde{l}}^{2}}{2}\frac{\partial {{\varvec{U}}}}{\partial \theta }\frac{\partial {{\varvec{U}}}^{\mathrm{T}}}{\partial \theta }\right. \\&\left. +\,\frac{{(1 - \mu ){{\tilde{l}}^2}{{\tilde{h}}^2}}}{{96}}\frac{{\partial {{\varvec{U}}}}}{{\partial \theta }} \frac{{\partial {{{\varvec{U}}}^\mathrm{{T}}}}}{{\partial \theta }} \right] \mathrm{{d}}\xi \mathrm{{d}}\theta \\ {{\varvec{K}}}_2= & {} \int _0^1 \int _{0}^{2\pi } \left[ 2\mu \frac{\partial {{\varvec{U}}}}{\partial \xi }\frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \theta }+\left( {1-\mu } \right) \frac{\partial {{\varvec{U}}}}{\partial \theta }\frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \xi }\right. \\&\left. -\,\frac{(1-\mu ){\tilde{h}}^{2}}{16}\frac{\partial {{\varvec{U}}}}{\partial \theta } \frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \xi } \right] \hbox {d} \xi \hbox {d}\theta \\ {{\varvec{K}}}_3= & {} \int _0^1 {\int _0^{2\pi } {\left[ {2\mu {\tilde{h}}\frac{\partial {{\varvec{U}}}}{\partial \xi }{{\varvec{W}}}^{\mathrm{T}}+\frac{\left( {1-\mu } \right) {\tilde{h}}^{3}}{12} \frac{\partial {{\varvec{U}}}}{\partial \theta }\frac{\partial ^{2}{{\varvec{W}}}^{\mathrm{T}}}{\partial \xi \partial \theta }} \right] } } \hbox {d}\xi \hbox {d}\theta \\ {{\varvec{K}}}_4= & {} \int _0^1 \int _0^{2\pi } \left[ \frac{\partial {{\varvec{V}}}}{\partial \theta } \frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \theta }+\frac{\left( {1-\mu } \right) }{2{\tilde{l}}^{2}}\frac{\partial {{\varvec{V}}}}{\partial \xi }\frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \xi }\right. \\&\left. +\,\frac{{\tilde{h}}^{2}}{12} \frac{\partial {{\varvec{V}}}}{\partial \theta } \frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \theta }\right. \\&\left. +\,\frac{3(1-\mu ){\tilde{h}}^{2}}{32{\tilde{l}}^{2}}\frac{\partial {{\varvec{V}}}}{\partial \xi }\frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \xi } \right] \hbox {d}\xi \hbox {d}\theta \\ {{\varvec{K}}}_5= & {} \int _0^1 \int _0^{2\pi } \left[ 2{\tilde{h}}\frac{\partial {{\varvec{V}}}}{\partial \theta }{{\varvec{W}}}^{\mathrm{T}}-\frac{{\tilde{h}}^{3}}{6}\frac{\partial {{\varvec{V}}}}{\partial \theta }\frac{\partial ^{2}{{\varvec{W}}}^{\mathrm{T}}}{\partial \theta ^{2}}\right. \\&\left. -\,\frac{\left( {1-\mu } \right) {\tilde{h}}^{3}}{4{\tilde{l}}^{2}} \frac{\partial {{\varvec{V}}}}{\partial \xi }\frac{\partial ^{2}{{\varvec{W}}}^{\mathrm{T}}}{\partial \xi \partial \theta }\right. \\&\left. -\,\frac{\mu {\tilde{h}}^{3}}{6{\tilde{l}}^{2}}\frac{\partial {{\varvec{V}}}^{\mathrm{T}}}{\partial \theta }\frac{\partial ^{2}{{\varvec{W}}}}{\partial \xi ^{2}} \right] \hbox {d}\xi \hbox {d}\theta \\ {{\varvec{K}}}_6= & {} \int _0^1 \int _0^{2\pi } \left[ {\tilde{h}}^{2}{{\varvec{WW}}}^{\mathrm{T}}+ \frac{{\tilde{h}}^{4}}{12{\tilde{l}}^{4}}\frac{\partial ^{2}{{\varvec{W}}}}{\partial \xi ^{2}} \frac{\partial ^{2}{{\varvec{W}}}^{\mathrm{T}}}{\partial \xi ^{2}}\right. \\&\left. +\,\frac{\mu {\tilde{h}}^{4}}{6{\tilde{l}}^{2}}\frac{\partial ^{2}{{\varvec{W}}}}{\partial \xi ^{2}}\frac{\partial ^{2} {{\varvec{W}}}^{\mathrm{T}}}{\partial \theta ^{2}}+\frac{{\tilde{h}}^{4}}{12} \frac{\partial ^{2}{{\varvec{W}}}}{\partial \theta ^{2}}\frac{\partial ^{2}{{\varvec{W}}}^{\mathrm{T}}}{\partial \theta ^{2}}\right. \\&\left. +\,\frac{(1-\mu ){\tilde{h}}^{4}}{6{\tilde{l}}^{2}} \frac{\partial ^{2}{{\varvec{W}}}}{\partial \xi \partial \theta }\frac{\partial ^{2}{{\varvec{W}}}^{\mathrm{T}}}{\partial \xi \partial \theta } \right] \hbox {d}\xi \hbox {d}\theta \\ {{\varvec{F}}}_\mathrm{bnon}= & {} \left[ {{\begin{array}{lll} {{\tilde{{{\varvec{F}}}}}_{bu} }&{} {{\tilde{{{\varvec{F}}}}}_{bv} }&{} {{\tilde{{{\varvec{F}}}}}_{bw} } \\ \end{array} }} \right] ^{\mathrm{T}} \end{aligned}$$
$$\begin{aligned} {\tilde{{{\varvec{F}}}}}_{bu}= & {} \sum _{s=1}^{N_\mathrm{B} } {\int _0^{2{\uppi }} {\left( {{\tilde{k}}_u {\tilde{l}}^{2}{{\varvec{U}}}_{\theta _s }^T {{\varvec{p}}}+{\tilde{l}} {\tilde{F}}_{\mathrm{pre},\theta _s } } \right) {{\varvec{U}}}_{\theta _s }^T \delta \left( {\theta =\theta _s } \right) d\theta } }\\ {\tilde{{{\varvec{F}}}}}_{bv}= & {} \sum _{s=1}^{N_\mathrm{B} } \left\{ {{\begin{array}{l@{\quad }ll} {\int _0^{2{\uppi }} {{\tilde{k}}_{v1} {{\varvec{V}}}_{\theta _s }^\mathrm{T} +{\tilde{k}}_{v2} \left( {{\varvec{V}}_{\theta _s }^\mathrm{T} q -{\tilde{\nu }}_{c,\theta _s } } \right) {\varvec{V}}_{\theta _s }^\mathrm{T} \delta \left( {\theta =\theta _s } \right) \hbox {d}\theta } } &{} \left| {{\tilde{k}}_{v2} \left( {{\tilde{v}}_{\theta _s } -{\tilde{v}}_{c,\theta _s } } \right) } \right| \le \nu \left| {{\tilde{F}}_{\mathrm{pre},\theta _s } -{\tilde{k}}_u {\tilde{l}}{\tilde{u}}_{\theta _s } } \right| &{}\hbox {for stick} \\ {\int _0^{2{\uppi }} {{\tilde{k}}_{v 1} {{\varvec{V}}}_{\theta _s }^\mathrm{T} +\nu \left| {{\tilde{F}}_{\mathrm{pre},\theta _s } -{\tilde{k}}_u {\tilde{l}} {{\varvec{U}}}_{\theta _s }^\mathrm{T} {{\varvec{p}}}} \right| \hbox {sgn}({\dot{{{\varvec{v}}}}}_{\theta =\theta _b } ) {{\varvec{V}}}_{\theta _s }^\mathrm{T} \delta \left( {\theta =\theta _s } \right) \hbox {d} \theta } }&{} \left| {{\tilde{k}}_{v2} \left( {{\tilde{v}}_{\theta _s } -{\tilde{v}}_{c,\theta _s } } \right) } \right|>\nu \left| {{\tilde{F}}_{\mathrm{pre},\theta _s } -{\tilde{k}}_u {\tilde{l}} {\tilde{u}}_{\theta _s } } \right| &{} \hbox {for slip} \\ \int _0^{2{\uppi }} {\tilde{k}}_{v1} {{\varvec{V}}}_{\theta _s }^\mathrm{T}\delta (\theta = \theta _{s})\hbox {d}\theta &{} &{} \hbox {for separation}\\ \end{array} }} \right. \\ {\tilde{{{\varvec{F}}}}}_{bw}= & {} \sum _{s=1}^{N_\mathrm{B} }\left\{ \begin{array}{l@{\quad }ll} \int _0^{2{\uppi }}\left( {\tilde{k}}_{w1} {\tilde{h}}^{2} {{\varvec{W}}}_{\theta _s }^\mathrm{T} +{\tilde{k}}_{w2} {\tilde{h}}^{2}\left( {{{\varvec{W}}}_{\theta _s }^\mathrm{T} {{\varvec{r}}}-{\tilde{w}}_{c,\theta _s } } \right) {{\varvec{W}}}_{\theta _s }^\mathrm{T}\right) \delta \left( {\theta =\theta _s } \right) d\theta &{} \left| {{\tilde{k}}_{w2} {\tilde{h}} \left( {{\tilde{w}}_{\theta _s } -{\tilde{w}}_{c,\theta _s } } \right) } \right| \le \nu \left| {{\tilde{F}}_{\mathrm{pre},\theta _s } -{\tilde{k}}_u {\tilde{l}} {\tilde{u}}_{\theta _s } } \right| &{}\hbox {for stick} \\ {{\int _0^{2{\uppi }} {{\tilde{k}}_{w1} {\tilde{h}}^{2} {{\varvec{W}}}_{\theta _s }^\mathrm{T} +\nu {\tilde{h}}\left| {{\tilde{k}}_u {\tilde{l}}{{\varvec{U}}}_{\theta _s }^\mathrm{T} {{\varvec{p}}}+{\tilde{F}}_{\mathrm{pre},\theta _s } } \right| \hbox {sgn}\left( {\dot{w}_{\theta _s } } \right) {{\varvec{W}}}_{\theta _s }^\mathrm{T} \delta \left( {\theta =\theta _s } \right) d\theta } } }&{} \left| {{\tilde{k}}_{w2} {\tilde{h}}\left( {{\tilde{w}}_{\theta _s } -{\tilde{w}}_{c,\theta _s } } \right) } \right| >\nu \left| {{\tilde{F}}_{\mathrm{pre},\theta _s } -{\tilde{k}}_u {\tilde{l}}{\tilde{u}}_{\theta _s } } \right| &{} \hbox {for slip} \\ \int _0^{2{\uppi }} {\tilde{k}}_{w1} {\tilde{h}}^{2} {{\varvec{W}}}_{\theta _s }^\mathrm{T} \delta (\theta =\theta _{s})\hbox {d}\theta &{} &{}\hbox {for separation}\\ \end{array}\right. \\ {{\varvec{K}}}_\mathrm{bolt}= & {} \hbox {diag}\left( \sum _{s=1}^N {{\tilde{k}}_u {\tilde{l}}^{2} {{\varvec{U}}}_{\theta _s } {{\varvec{U}}}_{\theta _s }^\mathrm{T} }, \sum _{s=1}^N {{\tilde{k}}_v {{\varvec{V}}}_{\theta _s } {{\varvec{V}}}_{\theta _s }^\mathrm{T} } , \sum _{s=1}^N {{\tilde{k}}_w {\tilde{h}}^{2} {{\varvec{W}}}_{\theta _s } {{\varvec{W}}}_{\theta _s }^\mathrm{T} } +\sum _{s=1}^N {{\tilde{k}}_\theta \frac{{\tilde{h}}^{2}}{{\tilde{l}}^{2}} \frac{\partial {{\varvec{W}}}_{\theta _s } }{\partial \xi }\frac{\partial {{\varvec{W}}}_{\theta _s }^\mathrm{T} }{\partial \xi }} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Li, C., She, H. et al. Modeling and dynamic analysis of bolted joined cylindrical shell. Nonlinear Dyn 93, 1953–1975 (2018). https://doi.org/10.1007/s11071-018-4300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4300-4

Keywords

Navigation