Skip to main content
Log in

An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers’ models with twofold Caputo derivatives ordering

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of the current work is to provide an analytical solution framework based on extended fractional power series expansion to solve 2D temporal–spatial fractional differential equations. For this purpose, we first present a new trivariate expansion endowed with twofold Caputo-fractional derivatives ordering, namely \(\alpha ,\,\beta \in (0,1]\), to study the combined effect of fractional derivatives on both temporal and spatial coordinates. Then, by virtue of this expansion, a parallel scheme of the Taylor power series solution method is utilized to extract both closed-form and supportive approximate series solutions of 2D temporal–spatial fractional diffusion, wave-like, telegraph, and Burgers’ models. The obtained closed-form solutions are found to be in harmony with the exact solutions exist in the literature when \(\alpha =\beta =1\), which exhibits the legitimacy and the validity of the proposed method. Moreover, the accuracy of the approximate series solutions is validated using graphical and tabular tools. Finally, a version of Taylor’s Theorem that associated with our proposed expansion is derived in terms of mixed fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci Rep 3, 3431 (2013). https://doi.org/10.1038/srep03431

    Article  Google Scholar 

  3. Alquran, M., Al-Khaled, K., Tridip, S., Chattopadhyay, J.: Revisited Fisher’s equation in a new outlook: a fractional derivative approach. Physica A 438, 81–93 (2015). https://doi.org/10.1016/j.physa.2015.06.036

    Article  MathSciNet  Google Scholar 

  4. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018). https://doi.org/10.1016/j.cnsns.2017.12.003

    Article  MathSciNet  Google Scholar 

  5. Jaradat, I., Al-Dolat, M., Al-Zoubi, K., Alquran, M.: Theory and applications of a more general form for fractional power series expansion. Chaos Solitons Fractals 108, 107–110 (2018). https://doi.org/10.1016/j.chaos.2018.01.039

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for spacetime fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2), 340–349 (2015)

    Google Scholar 

  7. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn. 84(3), 1553–1567 (2016). https://doi.org/10.1007/s11071-015-2588-x

    Article  Google Scholar 

  8. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54(3), 1763–1784 (2016). https://doi.org/10.1137/15M1031734

    Article  MathSciNet  MATH  Google Scholar 

  9. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29(1–4), 145–155 (2002). https://doi.org/10.1023/A:1016539022492

    Article  MathSciNet  MATH  Google Scholar 

  10. Momani, S., Odibat, Z.: Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 177(2), 488–494 (2006). https://doi.org/10.1016/j.amc.2005.11.025

    MathSciNet  MATH  Google Scholar 

  11. Singh, B.K., Srivastava, V.K.: Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM. R. Soc. Open sci. 2, 140511 (2015). https://doi.org/10.1098/rsos.140511

    Article  MathSciNet  Google Scholar 

  12. Liu, J., Hou, G.: Numerical solutions of the space- and time-fractional coupled Burgers equations by generalized differential transform method. Appl. Math. Comput. 217(16), 7001–7008 (2011). https://doi.org/10.1016/j.amc.2011.01.111

    MathSciNet  MATH  Google Scholar 

  13. Kumar, D., Singh, J., Kumar, S.: Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 20–26 (2015). https://doi.org/10.1016/j.jaubas.2014.02.002

    Google Scholar 

  14. Yulita, M.R., Noorani, M.S.M., Hashim, I.: Variational iteration method for fractional heat- and wave-like equations. Nonlinear Anal. Real World Appl. 10(3), 1854–1869 (2009). https://doi.org/10.1016/j.nonrwa.2008.02.026

    Article  MathSciNet  MATH  Google Scholar 

  15. Alquran, M., Jaradat, I.: A novel scheme for solving Caputo time-fractional nonlinear equations: theory and application. Nonlinear Dyn. 91(4), 2389–2395 (2018). https://doi.org/10.1007/s11071-017-4019-7

    Article  MATH  Google Scholar 

  16. Kumar, S., Kumar, A., Baleanu, D.: Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn. 85(2), 699–715 (2016). https://doi.org/10.1007/s11071-016-2716-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Alquran, M., Jaradat, H.M., Syam, M.I.: Analytical solution of the time-fractional Phi-4 equation by using modified residual power series method. Nonlinear Dyn. 90(4), 2525–2529 (2017). https://doi.org/10.1007/s11071-017-3820-7

    Article  MathSciNet  Google Scholar 

  18. Dadkhah, K.: Foundations of Mathematical and Computational Economics. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-13748-8_10

    Book  MATH  Google Scholar 

  19. El-Ajou, A., Abu Arqub, O., Al Zhour, Z., Momani, S.: New results on fractional power series: theories and applications. Entropy 15(12), 5305–5323 (2013). https://doi.org/10.3390/e15125305

    Article  MathSciNet  MATH  Google Scholar 

  20. El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV–Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015). https://doi.org/10.1016/j.jcp.2014.08.004

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiwari, R.: A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput. Phys. Commun. 188, 59–67 (2015). https://doi.org/10.1016/j.cpc.2014.11.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiwari, R., Mittal, R.C., Sharma, K.K.: A numerical scheme based on weighted average differential quadrature method for the numerical solution of Burgers’ equation. Appl. Math. Comput. 219(12), 6680–6691 (2013). https://doi.org/10.1016/j.amc.2012.12.035

    MathSciNet  MATH  Google Scholar 

  23. Mittal, R.C., Jiwari, R., Sharma, K.K.: A numerical scheme based on differential quadrature method to solve time dependent Burgers’ equation. Eng. Comput. 30(1), 117–131 (2013). https://doi.org/10.1108/02644401311286071

    Article  Google Scholar 

  24. Kumar, M., Pandit, S.: A composite numerical scheme for the numerical simulation of coupled Burgers’ equation. Comput. Phys. Commun. 185(3), 809–817 (2014). https://doi.org/10.1016/j.cpc.2013.11.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiwari, R., Pandit, S., Mittal, R.C.: A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl. Math. Comput. 218(13), 7279–7294 (2012). https://doi.org/10.1016/j.amc.2012.01.006

    MathSciNet  MATH  Google Scholar 

  26. Çenesiz, Y., Baleanu, D., Kurt, A., Tasbozan, O.: New exact solutions of Burgers’ type equations with conformable derivative. Wave Random Complex. 27(1), 103–116 (2017). https://doi.org/10.1080/17455030.2016.1205237

    Article  MathSciNet  MATH  Google Scholar 

  27. Tchier, F., Inan, I.E., Ugurlu, Y., Inc, M., Baleanu, D.: On new traveling wave solutions of potential KdV and \((3+1)\)-dimensional Burgers equations. J. Nonlinear Sci. Appl. 9(7), 5029–5040 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  29. Miller, K.S., Ross, B.: An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

  30. Herrmann, R.: Fractional Calculus: An Introduction for Physicist. World Scientific, New Jersey (2011)

    Book  MATH  Google Scholar 

  31. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017). https://doi.org/10.1186/s13661-017-0867-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Wazwaz, A.M., Gorguis, A.: Exact solutions for heat-like and wave-like equations with variable coefficients. Appl. Math. Comput. 149(1), 15–29 (2004). https://doi.org/10.1016/S0096-3003(02)00946-3

    MathSciNet  MATH  Google Scholar 

  33. Shou, D.H., He, J.H.: Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients. Phys. Lett. A 372(3), 233–237 (2008). https://doi.org/10.1016/j.physleta.2007.07.011

    Article  MathSciNet  MATH  Google Scholar 

  34. Öziş, T., Ağrseven, D.: He’s homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients. Phys. Lett. A 372(38), 5944–5950 (2008). https://doi.org/10.1016/j.physleta.2008.07.060

    Article  MathSciNet  MATH  Google Scholar 

  35. Srivastava, V.K., Awasthi, M.K., Chaurasia, R.K.: Reduced differential transform method to solve two and three dimensional second order hyperbolic telegraphic equations. J. King Saud Univ. Eng. Sci. 29(2), 166–171 (2017). https://doi.org/10.1016/j.jksues.2014.04.010

    Article  Google Scholar 

  36. Srivastava, V.K., Awasthi, M.K.: \((1+n)\)-Dimensional Burgers’ equation and its analytical solution: a comparative study of HPM, ADM and DTM. Ain Shams Eng. J. 5(2), 533–541 (2014). https://doi.org/10.1016/j.asej.2013.10.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Jaradat.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaradat, I., Alquran, M. & Abdel-Muhsen, R. An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers’ models with twofold Caputo derivatives ordering. Nonlinear Dyn 93, 1911–1922 (2018). https://doi.org/10.1007/s11071-018-4297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4297-8

Keywords

Mathematics Subject Classification

Navigation