Skip to main content
Log in

Generalized multiscale Lempel–Ziv complexity of cyclic alternating pattern during sleep

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Increasing evidences show that multiscale complexity measure is an intuitive and effective measure in quantifying various physical and physiological states. In this study, we demonstrate that the classical algorithm of multiscale Lempel–Ziv complexity (multiscale LZC or MLZ) has a critical limitation in neglecting rapid rhythms in complex systems. To this end, simulations added with different levels of white noise are designed to examine whether or not MLZ calculation neglects the effects of high-frequency noise. In addition, an algorithm by obtaining coarse-grained multiscale LZC, so-called generalized multiscale LZC (gMLZ), is proposed to yield a spectrum of complexity. A series of simulated non-stationary signals are generated for comparing the performances between MLZ and gMLZ. Besides, cyclic alternating pattern (CAP), characterized by the excessive synchronization of neuronal activity, has been associated with its power and physiological states. To understand how the synchronization of neuronal activities in different phase-A subtypes in exerting an influence over its power and complexity, we analyze the gMLZ of the real CAP database and compare it to its power spectra as well as modified multiscale entropy (MMSE), which is one of the most well-known multiscale complexity-based measures. The novel algorithm reveals that the evaluated complexities in different phase-A subtypes are inversely related to both the power and excessive synchronization in different timescales in general. The impact of frequencies, sleep stages and pathophysiological conditions on these two complexity measures is also examined. The discerning abilities of different phase-A subtypes using coarse-grained complexity measures (gMLZ and MMSE) are more consistent than power across different time scales. Our approach makes up a deficiency in handling with high-frequency oscillations and enables us to examine complexities of nonlinear systems in a wide-range of timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)

    Article  MathSciNet  Google Scholar 

  2. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005)

    Article  Google Scholar 

  3. Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of information”. Probl. Peredachi Inf. 1, 3–11 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Solomonoff, R.J.: A formal theory of inductive inference. Part II. Inf. Control 7, 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22, 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaspar, F., Schuter, H.G.: Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36, 842–848 (1987)

    Article  MathSciNet  Google Scholar 

  7. Jeong, J., Chae, J.H., Kim, S.Y., Han, S.H.: Nonlinear dynamic analysis of the EEG in patients with Alzheimer’s disease and vascular dementia. Clin. Neurophysiol. 18, 58–67 (2001)

    Article  Google Scholar 

  8. Jeong, J., Kim, S.Y., Han, S.H.: Non-linear dynamical analysis of the EEG in Alzheimer’s disease with optimal embedding dimension. Electroen. Clin. Neurophysio 106, 220–228 (1998)

    Article  Google Scholar 

  9. Jelles, B., van Birgelen, J.H., Slaets, J.P., Hekster, R.E., Jonkman, E.J., Stam, C.J.: Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin. Neurophysiol. 110, 1159–1167 (1999)

    Article  Google Scholar 

  10. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckmann, J.P., Ruelle, D.: Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56, 185–187 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Psychol. 278, H2039–H2049 (2000)

    Google Scholar 

  13. Nagaragan, R.: Quantifying physiological data with Lempel-Ziv complexity-certain issues. IEEE T. Biomed. Eng. 49, 1371–1373 (2002)

    Article  Google Scholar 

  14. Aboy, M., Hornero, R., Abásolo, D., Alvarez, D.: Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE T. Biomed. Eng. 53, 2282–2288 (2006)

    Article  Google Scholar 

  15. Li, Y., Tong, S., Liu, D., Gai, Y., Wang, X., Wang, J., Qiu, Y., Zhu, Y.: Abnormal EEG complexity in patients with schizophrenia and depression. Clin. Neurophysiol. 119, 1232–1241 (2008)

    Article  Google Scholar 

  16. Fernández, A., López-Ibor, M.I., Turrero, A., Santos, J.M., Morón, M.D., Hornero, R., Gómez, C., Méndez, M.A., Ortiz, T., López-Ibor, J.J.: Lempel-Ziv complexity in schizophrenia: a MEG study. Clin. Neurophysiol. 122, 2227–2235 (2011)

    Article  Google Scholar 

  17. Fernández, A., Zuluaga, P., Abásolo, D., Gómez, C., Serra, A., Méndez, M.A., Hornero, R.: Brain oscillatory complexity across the life span. Clin. Neurophysiol. 123, 2154–2162 (2012)

    Article  Google Scholar 

  18. Hornero, R., Abásolo, D., Escudero, J., Gómez, C.: Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Philos. Trans. R. Soc. A 367, 317–336 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dauwels, J., Srinivasan, K., Ramasubba Reddy, M., Musha, T., Vialatte, F.B., Latchoumane, C., Jeong, J., Cichocki, A.: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? Int. J. Alzheimers Dis. 2011, 539621 (2011)

    Google Scholar 

  20. Jouny, C.C., Bergey, C.K.: Characterization of early partial seizure onset: frequency, complexity and entropy. Clin. Neurophysiol. 123, 658–669 (2012)

    Article  Google Scholar 

  21. Niedermeyer, E.: The normal EEG in the waking adult.Electroencephalography: Basic Principles, Clinical Applications, and Related field. Williams & Wilkins, Baltimore (1999)

    Google Scholar 

  22. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  Google Scholar 

  23. Sanei, S., Chambers, J.: Introduction in EEG. Wiley, New York (2007)

    Book  Google Scholar 

  24. Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., Ivanov, PCh., Peng, C.K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA 99, 2466–2472 (2002)

    Article  Google Scholar 

  25. Ibáñez-Molina, A.J., Iglesias-Parro, S., Soriano, M.F., Aznarte, J.I.: Multiscale Lempel-Ziv complexity for EEG measures. Clin. Neurophysiol. 126, 541–548 (2015)

    Article  Google Scholar 

  26. Hu, J., Gao, J., Wang, X.: Multifractal analysis of sunspot time series: the effects of the 11-year cycle and Fourier truncation. J. Stat. Mech. C Theory Exp. 2, P02066 (2009)

    Google Scholar 

  27. Bell, I.R., Howerter, A., Jackson, N., Aickin, M., Bootzin, R.R., Brooks, A.J.: Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia. Homeopathy 101, 182–192 (2012)

    Article  Google Scholar 

  28. Chung, C.C., Kang, J.H., Yuan, R.Y., Wu, D., Chen, C.C., Chi, N.F., Chen, P.C., Hu, C.J.: Multiscale entropy analysis of electroencephalography during sleep in patient with Parkinson disease. Clin. EEG Neurosci. 44, 221–226 (2013)

    Article  Google Scholar 

  29. Shi, W., Shang, P., Ma, Y., Sun, S., Yeh, C.H.: A comparison study on stages of sleep: Quantifying multiscale complexity using higher moments on coarse-graining. Commun. Nonlinear Sci. Numer. Simul. 44, 292–303 (2017)

    Article  MathSciNet  Google Scholar 

  30. Humeau-Heurtier, A.: The multiscale entropy algorithm and its variants: a review. Entropy 17, 3110–3123 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wu, S.D., Wu, C.W., Lee, K.Y., Lin, S.G.: Modified multiscale entropy for short-term time series analysis. Phys. A. 392, 5865–5873 (2013)

    Article  Google Scholar 

  32. Terzano, M.G., Mancia, D., Salati, M.R., Costani, G., Decembrino, A., Parrino, L.: The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8, 137–145 (1985)

    Article  Google Scholar 

  33. Terzano, M.G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault, C., Hirshkowitz, M., Mahowald, M., Moldofsky, H., Rosa, A., Thomas, R., Walters, A.: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2, 537–553 (2001)

    Article  Google Scholar 

  34. Lundberg, N.: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta. Psychiatr. Scand. 36, 1–193 (1960)

    Google Scholar 

  35. Evans, B.M.: Periodic activity in cerebral arousal mechanisms-the relationship to sleep and brain damage. Electroencephalogr. Clin. Neurophysiol. 83, 130–137 (1992)

    Article  Google Scholar 

  36. Steriade, M., Amzica, F., Contreras, D.: Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr. Clin. Neurophysiol. 90, 1–16 (1994)

    Article  Google Scholar 

  37. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, e215–e220 (2000)

    Article  Google Scholar 

  38. Rechtscahffen, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. U.S. National Institutes of Health 204 (1968)

  39. De Carli, F., Nobili, L., Beelke, M., Watanabe, T., Smerieri, A., Parrino, L., Terzano, M.G., Ferrillo, F.: Quantitative analysis of sleep EEG microstructure in the time-frequency domain. Brain Res. Bull. 63, 399–405 (2004)

    Article  Google Scholar 

  40. Ferri, R., Rundo, F., Bruni, O., Terzano, M.G., Stam, C.J.: Dynamics of the EEG slow-wave synchronization during sleep. Clin. Neurophysiol. 116, 2783–2795 (2005)

    Article  Google Scholar 

  41. Togo, F., Cherniack, N.S., Natelson, B.H.: Electroencephalogram characteristics of autonomic arousals during sleep in healthy men. Clin. Neurophysiol. 117, 2597–2603 (2006)

    Article  Google Scholar 

  42. Ferri, R., Parrino, L., Smerieri, A., Terzano, M.G., Elia, M., Musumeci, S.A., Pettinato, S.J.: Cyclic alternating pattern and spectral analysis of heart rate variability during normal sleep. Sleep Res. 9, 13–18 (2000)

    Article  Google Scholar 

  43. Ferri, R., Bruni, O., Miano, S., Terzano, M.G.: Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med. 6, 29–36 (2005)

    Article  Google Scholar 

  44. Terzano, M.G., Parrino, L., Boselli, M., Smerieri, A., Spaggiari, M.C.: CAP components and EEG synchronization in the first 3 sleep cycles. Clin. Neurophysiol. 111, 283–290 (2000)

  45. Ferrillo, F., Gabarra, M., Nobili, L., Parrino, L., Schiavi, G., Stubinski, B., Terzano, M.G.: Comparison between visual scoring of cyclic alternating pattern (CAP) and computerized assessment of slow EEG oscillations in the transition from light to deep non-REM sleep. J. Clin. Neurophysiol. 14, 210–216 (1997)

    Article  Google Scholar 

  46. Stam, C.J., Nicolai, J., Keunen, R.W.: Nonlinear dynamical analysis of periodic lateralized epileptiform discharges. Clin. Electroencephalogr. 29, 101–105 (1998)

    Article  Google Scholar 

  47. Ferri, R., Parrino, L., Smerieri, A., Terzano, M.G., Elia, M., Musumeci, S.A., Pettinato, S., Stam, C.J.: Non-linear EEG measures during sleep: effects of the different sleep stages and cyclic alternating pattern. Int. J. Psychophysiol. 43, 273–286 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research is sponsored by the China Postdoctoral Science Foundation (Grant 043206005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, CH., Shi, W. Generalized multiscale Lempel–Ziv complexity of cyclic alternating pattern during sleep. Nonlinear Dyn 93, 1899–1910 (2018). https://doi.org/10.1007/s11071-018-4296-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4296-9

Keywords

Navigation