Insights on the point of contact analysis and characterization of constrained pipelines conveying fluid

Original Paper
  • 24 Downloads

Abstract

Modern methods of nonlinear dynamics including time histories, phase portraits, power spectra, and Poincaré sections are used to characterize the stability and bifurcation regions of a cantilevered pipe conveying fluid with symmetric constraints at the point of contact. In this study, efforts are made to demonstrate the importance of characterizing the system at the arbitrarily positioned symmetric constraints rather than at the tip of the cantilevered pipe. Using the full nonlinear equations of motion and the Galerkin discretization, a nonlinear analysis is performed. After validating the model with previous results using the bifurcation diagrams and achieving full agreement, the bifurcation diagram at the point of contact is further investigated to select key flow velocities of interest. In addition to demonstrating the progression of the selected regions using primarily phase portraits, a detailed comparison is made between the tip and the point of contact at the key flow velocities. In doing so, period doubling, pitchfork bifurcations, grazing bifurcations, sticking, and chaos that occur at the point of contact are found to not always occur at the tip for the same flow speed. Thus, it is shown that in the case of cantilevered pipes with constraints, more accurate characterization of the system is obtained in a specified range of flow velocities by characterizing the system at the point of contact rather than at the tip.

Keywords

Cantilevered pipe Bifurcations Nonlinear dynamics Chaos Symmetric constraint Point of contact 

Notes

Acknowledgements

The authors would like to acknowledge the funding support from New Mexico Space Grant Consortium

References

  1. 1.
    Ing, J., Kryzhevich, S., Wiercigroch, M.: Through the looking-glass of the grazing bifurcation: part I—theoretical framework. Discontin. Nonlinearity Complex. 2, 203–223 (2013)CrossRefMATHGoogle Scholar
  2. 2.
    Soukup, J., Skočilas, J., Skočilasová, B., Ryhlíková, L.: Motion equations of isotropic and orthotropic plate impacted by elastic rod. J. Appl. Nonlinear Dyn. 3, 393–401 (2014)CrossRefMATHGoogle Scholar
  3. 3.
    Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G., Otrashevskaia, V.V.: Stability and bifurcations analysis for 2-DOF vibroimpact system by parameter continuation method. Part I: loading curve. J. Appl. Nonlinear Dyn. 4, 357–370 (2015)CrossRefGoogle Scholar
  4. 4.
    Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G.: Numerical bifurcation analysis of discontinuous 2-DOF vibroimpact system. Part 2: frequency-amplitude responses. J. Appl. Nonlinear Dyn. 5, 269–281 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kuo, C.-W., Suh, C.S.: Mitigating grazing bifurcation and vibro-impact instability in time-frequency domain. J. Appl. Nonlinear Dyn. 5, 169–184 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Akhmet, M.U., Kivilcim, A.: An impact oscillator with a grazing cycle. Discontin. Nonlinearity Complex. 6, 105–111 (2017)CrossRefMATHGoogle Scholar
  7. 7.
    Dishlieva, K.G.: Asymptotic stability of nonzero solutions of discontinuous systems of impulsive differential equations. Discontin. Nonlinearity Complex. 6, 201–218 (2017)CrossRefMATHGoogle Scholar
  8. 8.
    Wang, L., Hong, Y., Dai, H., Ni, Q.: Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech. Solida Sin. 29, 567–576 (2016)CrossRefGoogle Scholar
  9. 9.
    Zhang, W., Yan, H., Jiang, H., Hu, K., Peng, Z., Meng, G.: Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: stability, frequency shift, and energy dissipation. J. Sound Vib. 368, 103–120 (2016)CrossRefGoogle Scholar
  10. 10.
    Rinaldi, S., Prabhakar, S., Vengallator, S., Païdoussis, M.: Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability. J. Sound Vib. 329, 1081–1088 (2010)CrossRefGoogle Scholar
  11. 11.
    Hu, K., Wang, Y., Dai, H., Wang, L., Qian, Q.: Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 105, 93–107 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ashley, H., Haviland, G.: Bending vibrations of a pipe line containing flowing fluid. J. Appl. Mech. 17, 229–232 (1950)MathSciNetGoogle Scholar
  13. 13.
    Housner, G.W.: Bending vibrations of a pipe when liquid flows through it. J. Appl. Mech. 19, 205–208 (1952)Google Scholar
  14. 14.
    Askarian, A.R., Haddapour, H., Firouz-Abadi, R., Abtahi, H.: Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle. Int. J. Non-Linear Mech. 91, 22–35 (2017)CrossRefGoogle Scholar
  15. 15.
    Chen, S., Rosenberg, G.: Vibration and stability of tube exposed to pulsating parallel flow. Trans. Am. Nucl. Soc. 13, 335–336 (1970)Google Scholar
  16. 16.
    Ghayesh, M., Païdoussis, M.: Three dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear Mech. 45, 507–524 (2010)CrossRefGoogle Scholar
  17. 17.
    Païdoussis, M., Semler, C., Wadham-Gagnon, M., Saaid, S.: Dynamics of cantilevered pipes conveying fluid. Part 2: dynamics of the system with intermediate spring support. J. Fluids Struct. 23, 569–587 (2007)CrossRefGoogle Scholar
  18. 18.
    Païdoussis, M., Semler, C.: Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. J. Fluids Struct. 7, 269–298 (1993)CrossRefGoogle Scholar
  19. 19.
    Modarres-Sadeghi, Y., Semler, C., Wadham-Gagnon, M., Païdoussis, M.: Dynamics of cantilevered pipes conveying fluid. Part 3: three-dimensional dynamics in the presence of an end-mass. J. Fluids Struct. 23, 589–603 (2007)CrossRefGoogle Scholar
  20. 20.
    Semler, C., Li, G., Païdoussis, M.: The nonlinear equations of motion of a pipe conveying fluid. J. Sound Vib. 169, 577–599 (1994)CrossRefMATHGoogle Scholar
  21. 21.
    Rousselet, J., Herrmann, G.: Dynamic behavior of continuous cantilevered pipes conveying fluid near critical velocities. J. Appl. Mech. 43, 945–947 (1981)Google Scholar
  22. 22.
    Païdoussis, M., Moon, F.: Nonlinear and chaotic fluidelastic vibrations of a flexible pipe conveying fluid. J. Fluids Struct. 2, 567–591 (1988)CrossRefGoogle Scholar
  23. 23.
    Païdoussis, M., Li, G., Moon, F.: Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid. J. Sound Vib. 135, 567–591 (1989)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Païdoussis, M., Li, G., Rand, R.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. J. Appl. Mech. 58, 559–565 (1991)CrossRefGoogle Scholar
  25. 25.
    Païdoussis, M., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4, 655–670 (1993)CrossRefGoogle Scholar
  26. 26.
    Gregory, R., Païdoussis, M.: Unstable oscillation of tubular cantilevers conveying fluid. I. Theory; II. Experiments. In: Proceedings of the Royal Society (London), Series A, vol. 293, pp. 512–527 and 528–542 (1966)Google Scholar
  27. 27.
    Païdoussis, M.C.J., Copeland, J.: Low-dimensional chaos in a flexible tube conveying fluid. J. Appl. Mech. 59, 196–205 (1992)CrossRefGoogle Scholar
  28. 28.
    Païdoussis, M.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)Google Scholar
  29. 29.
    Païdoussis, M., Deksnis, E.: Articulated models of cantilevers conveying fluid: the study of a paradox. I. Mech. E. J. Mech. Eng. Sci. 12, 288–300 (1970)CrossRefGoogle Scholar
  30. 30.
    Païdoussis, M., Issid, N.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33, 267–294 (1974)CrossRefGoogle Scholar
  31. 31.
    Païdoussis, M., Li, G.: Pipes conveying fluid: a model dynamical problem. J. Fluids Struct. 7, 137–204 (1993)CrossRefGoogle Scholar
  32. 32.
    Tang, D., Dowell, E.: Chaotic oscillations of a cantilevered pipe conveying fluid. J. Fluids Struct. 2, 263–283 (1988)CrossRefGoogle Scholar
  33. 33.
    Whiston, G.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 118, 395–424 (1987)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Moon, F., Shaw, S.: Chaotic vibrations of a beam with non-linear boundary conditions. Int. J. Non-Linear Mech. 18, 465–477 (1983)CrossRefGoogle Scholar
  35. 35.
    Shaw, S.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 99, 199–212 (1985)CrossRefGoogle Scholar
  36. 36.
    de Weger, J., Binks, D.M.J., de Water, W.: Generic behavior of grazing impact oscillators. Phys. Rev. Lett. 76, 3951–3954 (1996)CrossRefGoogle Scholar
  37. 37.
    Long, X., Lin, G., Balachandran, B.: Grazing bifurcation in elastic structures excited by harmonic impactor motions. Physica D 237, 1129–1138 (2008)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Dick, A., Balachandran, B., Yabuno, H., Numatsu, K., Hayashi, K., Kuroda, M., Ashida, K.: Utilizing nonlinear phenomena to locate grazing in the constrained motion of a cantilever beam. Nonlinear Dyn. 57, 335–349 (2009)CrossRefMATHGoogle Scholar
  39. 39.
    Chakraborty, I., Balachandran, B.: Near-grazing dynamics of base-excited cantilevers with nonlinear tip interactions. Nonlinear Dyn. 70, 1297–1310 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, L., Liu, Z., Abdelkefi, A., Wang, Y., Dai, H.: Nonlinear dynamics of cantilevered pipes conveying fluid: towards a further understanding of the effect of loose constraints. Int. J. Non-Linear Mech. 95, 19–29 (2017)CrossRefGoogle Scholar
  41. 41.
    Shaw, S., Holmes, P.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Nordmark, A.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)CrossRefGoogle Scholar
  43. 43.
    Stensson, A., Nordmark, A.: Experimental investigation of some consequences of low velocity impacts on the chaotic dynamics of a mechanical system. Philos. Trans. R. Soc. A 347, 439–448 (1994)CrossRefGoogle Scholar
  44. 44.
    Chin, W., Ott, E., Nusse, H., Grebogi, C.: Grazing bifurcation in impact oscillators. Phys. Rev. E 50, 4427–4444 (1994)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Virgin, L., Begley, C.: Grazing Bifurcations and basins of attraction in an impact-friction. Physica D 130, 43–57 (1999)CrossRefMATHGoogle Scholar
  46. 46.
    Molenaar, J., de Weger, J., de Water, W.: Mapping of grazing impact oscillators. Nonlinearity 14, 301–321 (2001)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Dankowicz, H., Zhao, X., Misra, S.: Near grazing in tapping-mode atomic force microscopy. Int. J. Non-Linear Mech. 42, 697–709 (2007)CrossRefGoogle Scholar
  48. 48.
    Virgin, L., Dowell, E., Conner, M.: On the evolution of deterministic non-periodic behavior of an airfoil. Int. J. Non-Linear Mech. 34, 499–514 (1999)CrossRefMATHGoogle Scholar
  49. 49.
    Conner, M., Tang, M., Dowell, E., Virgin, L.: Nonlinear behavior of a typical airfoil section with control surface freeplay. J. Fluids Struct. 11, 89–109 (1996)CrossRefGoogle Scholar
  50. 50.
    Trickey, T., Virgin, L., Dowell, H.: The stability of limit-cycle oscillations in a nonlinear aeroelastic system. Proc. Math. Phys. Eng. Sci. 458, 2203–2226 (2002)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Abdelkefi, A., Vasconcellos, R., Marques, F., Hajj, M.: Modeling and identification of freeplay nonlinearity. J. Sound Vib. 331, 1898–1907 (2012)CrossRefGoogle Scholar
  52. 52.
    Vasconcellos, R., Abdelkefi, A., Marques, F., Hajj, M.: Representation and analysis of control surface freeplay nonlinearity. J. Fluids Struct. 31, 79–91 (2012)CrossRefGoogle Scholar
  53. 53.
    Vasconcellos, R., Abdelkefi, A., Hajj, M., Almeida, D., Marques, F.: Airfoil control surface discontinuous nonlinearity experimental assessment and numerical model validation. J. Vib. Control 22, 1633–1644 (2014)CrossRefGoogle Scholar
  54. 54.
    Vasconcellos, R., Abdelkefi, A.: Phenomena and characterization of grazing-sliding bifurcations in aeroelastic systems with discontinuous impact effects. J. Sound Vib. 358, 315–322 (2015)CrossRefGoogle Scholar
  55. 55.
    di Bernardo, M., Budd, C., Champneys, A., Kowalcyzk, P., Nordmark, A., Tost, G., Piiroinen, P.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629–701 (2008)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Wagg, D.: Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator. Chaos Solitons Fractals 22, 541–548 (2004)CrossRefMATHGoogle Scholar
  57. 57.
    Makarenkov, O., Lamb, J.: Dynamics and bifurcations of nonsmooth systems: a survey. Physica D 241, 1826–1844 (2012)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Luo, A., Gegg, B.: On the mechanism of stick and nonstick, periodic motions in a periodically forced, linear oscillator with dry friction. J. Vib. Acoust. 128, 97–105 (2005)CrossRefGoogle Scholar
  59. 59.
    Luo, A., Gegg, B.: Dynamics of a harmonically excited oscillator with dry-friction on a sinusoidally time-varying, traveling surface. Int. J. Bifurc. Chaos 16(12), 3539–3566 (2006)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Luo, A., Gegg, B.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291, 132–168 (2006)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Galvanetto, U.: Some discontinuos bifurcations in a two block stick-slip. J. Sound Vib. 248, 653–659 (2001)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Galvanetto, U.: Sliding bifurcations in the dynamics of mechanical systems with dry friction—remarks for engineers and applied scientists. J. Sound Vib. 276, 121–139 (2004)CrossRefGoogle Scholar
  63. 63.
    Nordmark, A., Kowalczyk, P.: A codimension two scenario of sliding solutions in grazing-sliding bifurcations. Nonlinearity 19, 1–26 (2006)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Jeffrey, M.: Nondeterminism in the limit of nonsmooth dynamics. Phys. Rev. Lett. 106, 254103 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations