Advertisement

Nonlinear Dynamics

, Volume 93, Issue 3, pp 1219–1230 | Cite as

Cluster oscillatory synchronization of networked Lagrangian systems with the distributed adaptive observers

  • Liyun Zhao
  • Rui Wang
  • Wen Li
  • Quanjun Wu
Original Paper

Abstract

This paper investigates cluster synchronization problem for uncertain networked Lagrangian systems with nonidentical oscillatory leaders. Firstly, in the case of positive couplings and in the case of positive and negative couplings, we propose two different distributed adaptive observers. Based on these adaptive observers, two adaptive controllers are developed. Then, some cluster synchronization criteria are given to ensure that the desired cluster synchronization scheme can be arrived. Due to introduction of these two adaptive observers, it is no longer necessary for each follower to obtain the frequency information of the corresponding leader system. Finally, the performance and effective of the provided controllers are verified by some numerical examples.

Keywords

Cluster synchronization Lagrangian systems Positive couplings Positive and negative couplings 

Notes

Acknowledgements

This work is supported by the National Science Foundation of China (Grant No. 61663035), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2015MS0122), and Baotou science and technology project (Grant No. 2017S2003-3-8).

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

References

  1. 1.
    Abhijit, D., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 46, 2014–2021 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, New York (1991)zbMATHGoogle Scholar
  3. 3.
    Spong, M.W., Chopra, N.: Synchronization of networked Lagrangian systems. Lecture Notes in Control and Information Sciences, Lagrangian and Hamiltonian Methods for Nonlinear Control. pp. 47–59. Springer, Berlin (2007)Google Scholar
  4. 4.
    Tang, Z., Park, J.H., Zheng, W.: Distributed impulsive synchronization of Lur’e dynamical networks via parameter variation methods. Int. J. Robust Nonlinear Control 28, 1001–1015 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wei, Y.L., Ju, H.P., Karimi, H.R., Tian, Y.C., Jung, Y.H.: Improved stability and stabilization results for stochastic synchronization of continuous-time semi-markovian jump neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. (2017).  https://doi.org/10.1109/TNNLS.2017.2696582 Google Scholar
  6. 6.
    Shen, H., Park, J.H., Wu, Z.G.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77, 1709–1720 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Liang, K., Dai, M.C., Shen, H., Wang, J., Wang, Z., Chen, B.: \(L_2-L_\infty \) synchronization for singularly perturbed complex networks with semi-Markov jump topology. Appl. Math. Comput. 321, 1709–1720 (2018)Google Scholar
  8. 8.
    Ren, W.: Distributed leaderless consensus algorithms for networked lagrange systems. Int. J. Control 82, 2137–2149 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nuño, E., Ortega, R., Basañez, L., David, H.: Synchronization of networks of nonidentical Euler–Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control 56, 935–940 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, B., Cheng, J., Zhan, J.M.: A sojourn probability approach to fuzzy-model-based reliable control for switched systems with mode-dependent time-varying delays. Nonlinear Anal. Hybrid Syst. 26, 239–253 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, B., Cheng, J., Al-Barakati, A., Fardoun, H.M.: A mismatched membership function approach to sampled-data stabilization for T-S fuzzy systems with time-varying delayed signals. Signal Process. 140, 161–170 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhou, J., Wu, X.J., Liu, Z.R.: Distributed coordinated adaptive tracking in networked redundant robotic systems with a dynamic leader. Sci. China Technol. Sci. 57, 450–462 (2014)Google Scholar
  13. 13.
    Mei, J., Ren, W., Ma, G.F.: Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. Automatica 48, 653–659 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhao, L.Y., Ji, J.C., Liu, J., Wu, Q.J., Zhou, J.: Tracking task-space synchronization of networked Lagrangian systems with switching topology. Nonlinear Dyn. 83, 1673–1685 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chung, S.J., Slotine, J.J.E.: Cooperative robot control and concurrent synchronization of Lagrangian systems. IEEE Trans. Robot. 25, 686–700 (2009)CrossRefGoogle Scholar
  16. 16.
    Wu, X.J., Zhou, J., Xiang, L., Lin, C.N., Zhang, H.: Impulsive synchronization motion in networked open-loop multibody systems. Multibody Syst. Dyn. 30, 37–52 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, H.L.: Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics. Automatica 49, 755–761 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dong, W.J.: On consensus algorithms of multiple uncertain mechanical systems with a reference trajectory. Automatica 47, 2023–2028 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, Y., Min, H.B., Wang, S.C., Liu, Z.G., Liao, S.Y.: Distributed adaptive consensus for multiple mechanical systems with switching topologies and time-varying delay. Syst. Control Lett. 64, 119–126 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2006)Google Scholar
  21. 21.
    Qin, J.H., Yu, C.B.: Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica 49, 2898–2905 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yu, C.B., Qin, J.H., Gao, H.: Cluster synchronization in directed networks of partial-state coupled linear systems under pinning control. Automatica 50, 2341–2349 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tang, Z., Park, J.H., Feng, J.W.: Novel approaches to pin cluster synchronization on complex dynamical networks in Lur’e forms. Commun. Nonlinear Sci. Numer. Simul. 57, 422–438 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005)CrossRefGoogle Scholar
  25. 25.
    Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22, 52–67 (2002)CrossRefGoogle Scholar
  26. 26.
    Montbrio, E., Kurths, J., Blasius, B.: Synchronization of two interacting populations of oscillators. Phys. Rev. E 70, 056125 (2004)CrossRefGoogle Scholar
  27. 27.
    Hwang, K., Tan, S., Chen, C.: Cooperative strategy based on adaptive Q-learning for robot soccer systems. IEEE Trans. Fuzzy Syst. 12, 569–576 (2004)CrossRefGoogle Scholar
  28. 28.
    Cai, H., Huang, J.: The leader-following consensus for multiple uncertain Euler–Lagrange systems with an adaptive distributed observer. IEEE Trans. Autom. Control 61, 3152–3157 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, T., Huang, J.: Adaptive leader-following consensus for uncertain Euler-Lagrange systems under directed switching networks (2016). arxiv:1604.07261v1
  30. 30.
    Wang, H.L.: Similarity decomposition approach to leader–follower oscillatory synchronization of networked mechanical systems (2014). arxiv:1402.7305v1
  31. 31.
    Wang, H.L.: Flocking of networked uncertain Euler–Lagrange systems on directed graphs. Automatica 49, 2774–2779 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, NewYork (2001)CrossRefzbMATHGoogle Scholar
  33. 33.
    Rugh, W.J.: Linear System Theory. Prentice-Hall, Upper Saddle River, New York (1996)zbMATHGoogle Scholar
  34. 34.
    Lewis, F.L., Jagannathan, S., Yesildirek, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. Taylor & Francis, New York (1998)Google Scholar
  35. 35.
    Kelly, R., Santibanez, V., Loria, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)Google Scholar
  36. 36.
    Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control Theory and Practice. Marcel Dekker Inc, New York (2006)Google Scholar
  37. 37.
    Zhao, L.Y., Liu, J., Xiang, L., Zhou, J.: Group synchronization of diffusively coupled harmonic oscillators. Kybernetika 52, 629–647 (2016)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Wei, Y.L., Qiu, J.B., Karimi, H.R.: Quantized \(\cal{H}_\infty \) filtering for continuous-time Markovian jump systems with deficient mode information. Asian J. Control 17, 1914–1923 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Cai, H., Huang, J.: The leader-following consensus for multiple uncertain Euler–Lagrange systems with an adaptive distributed observer. IEEE Trans. Autom. Control 61, 3152–3157 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wu, W., Zhou, W., Chen, T.P.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I. Regular Pap. 56, 819–839 (2009)MathSciNetGoogle Scholar
  41. 41.
    Su, H.S., Chen, Z.Q., Wang, X., Wang, H., Valeyev, N.: Adaptive cluster synchronisation of coupled harmonic oscillators with multiple leaders. IET Control Theory Appl. 7, 765–772 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Brualdi, R., Ryser, H.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  43. 43.
    Ren, W., Cao, Y.C.: Distribute Coordination of Multi-agent Networks. Springer, NewYork (2011)CrossRefGoogle Scholar
  44. 44.
    Cheah, C.C., Liu, C., Slotine, J.J.E.: Approximate Jacobian adaptive control for robot manipulators. In: Proceedings of the 2004 IEEE International Conference on Robtics & Automation, New Orleans (2004)Google Scholar
  45. 45.
    Wei, Y.L., Park, J.H., Karimi, H.R., Tian, Y.C., Jung, Y.H.: Reliable output feedback control for piecewise affine systems with markov-type sensor failure. IEEE Trans. Circuits Syst. II Express Briefs (2017).  https://doi.org/10.1109/TCSII.2017.2725981
  46. 46.
    Wei, Y.L., Park, J.H., Qiu, J.B., Wu, L.G., Jung, Y.H.: Sliding mode control for semi-Markovian jump systems via output feedback. Automatica 81, 133–141 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Cheng, J., Park, J.H., Zhang, L.X., Zhu, Y.Z.: An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies. IEEE Trans. Fuzzy Syst. (2016).  https://doi.org/10.1109/TFUZZ.2016.2633325 Google Scholar
  48. 48.
    Cheng, J., Park, J.H., Karimi, H.R., Zhao, X.D.: Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays. Inf. Sci. 399, 219–238 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina

Personalised recommendations