Nonlinear Dynamics

, Volume 93, Issue 3, pp 995–1008 | Cite as

Local detrended fluctuation analysis for spectral red-edge parameters extraction

  • Shan Jiang
  • Fang Wang
  • Luming Shen
  • Guiping Liao
Original Paper


Nowadays, spectrum technology makes it possible to nondestructively monitor crop and provide real-time diagnostic advice. Spectral red-edge parameters are important detection target for the growth of rapeseed. In this work, we propose a new method to acquire the rapeseed’s spectral red-edge parameters based on local detrended fluctuation analysis (L-DFA). In practice, by using the L-DFA, local Hurst exponent of the spectrum is calculated firstly. And then, six traditional red-edge parameter extraction methods, namely maximum first derivative method, adjusted linear extrapolation method, linear four-point interpolation method, inverted Gaussian method, Lagrangian interpolation method, and polynomial fitting interpolation, are employed to act on the estimated local Hurst exponent, and thus four red-edge parameters, i.e., red-edge position, red-edge amplitude, and left and right red-edge area, are obtained. In our experiments, by using the above four local Hurst exponent-based red-edge parameters as argument, a prediction model is developed to forecast the SPAD values (soil and plant analyzer development, often used as a parameter to indicate the chlorophyll content) for the five rapeseed’s growth periods based on random decision forest method. The results show that the local Hurst exponent-based red-edge feature can produce better model effect than the original spectrum-based one for the all phenological periods. Significance test for the four kinds of plant patterns shows that there is huge difference of the proposed four-dimensional red-edge features between the transplant and direct plant in the whole process of rapeseed’s growth. The differences between the other three groups of plant factors (two planting densities, two fertilizer types, and two weed controls) are not significant in certain specific growth periods of rapeseed. These findings provide a basis for studying difference of rapeseed yield and oil differences between different planting patterns.


Local detrended fluctuation analysis Local Hurst exponent Rapeseed (Brassica napusSpectrum Red-edge parameters 



The author wishes to thank the anonymous reviewers and the handling editor as well as associate editor Dr. J. A. Tenreiro Machado for their comments and suggestions, which led to a great improvement to the presentation of this work.

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 31501227, 11571103).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Li, J.W.: Studies on the diagnosis mechanism and modeling of leaf color-nitrogen nutrition in rice and rapeseed plant by computer vision. Ph. D. thesis of Hunan Agricultural University, Changsha, China, p 12 (2013)Google Scholar
  2. 2.
    Wang, F.: Multifractal Method of Non-stationary Image—Oriented to at Crop Diagnostic Problems of Leaf Image Multifractal Features. Changchun, China (2016)Google Scholar
  3. 3.
    Collins, W.: Remote sensing of crop type and maturity. Photogramm. Eng. Remote Sens. 44, 43–55 (1978)Google Scholar
  4. 4.
    Collins, W., Raines, G.L., Canney, F.C.: Airborne spectroradiometer discrimination of vegetation anomalies over sulphide mineralisation—a remote sensing technique. Geol Soc Am 7–9, 932–933 (1977)Google Scholar
  5. 5.
    Horler, D.N.H., Dockray, M., Barber, J.: The red-edge of plant leaf reflectance. Int. J. Remote Sens. 4(2), 273–288 (1983)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Demetriades-Shah, T.H., Kanemasu, E.T., Shultis, J.K., Kirkham, M.B.: Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds. Remote Sens. Environ. 44, 81–87 (1993)CrossRefGoogle Scholar
  7. 7.
    Tsai, F., Philpot, W.: Derivative analysis of hyperspectral data. Remote Sens. Environ. 66, 41–51 (1998)CrossRefGoogle Scholar
  8. 8.
    Bonham-Carter, G.F.: Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Comput. Geosci. 14, 339–356 (1988)CrossRefGoogle Scholar
  9. 9.
    Tian, Y.C., Yao, X., Yang, J., Cao, W.X., Zhu, Y.: Extracting red-edge position parameters from ground- and space-based hyperspectral data for estimation of canopy leaf nitrogen concentration in rice. Plant Prod. Sci. 14(3), 270–281 (2011)CrossRefGoogle Scholar
  10. 10.
    Guyot, G., Baret, F., Jacquemoud, S.: Imaging spectroscopy for vegetation studies. In: Toselli, F., Bodechtel, J. (eds.) Imaging Spectroscopy: Fundamentals and Prospective Application, pp. 145–165. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  11. 11.
    Dawson, T.P., Curran, P.J.: A new technique for interpolating the reflectance red-edge position. Int. J. Remote Sens. 19, 2133–2139 (1998)CrossRefGoogle Scholar
  12. 12.
    Pu, R., Gong, P., Biging, G.S., et al.: Extraction of red-edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans. Geosci. Remote Sens. 41(4), 916–921 (2003)CrossRefGoogle Scholar
  13. 13.
    Tang, Y.L., Wang, R.C., Huang, J.F.: Relations between red-edge characteristics and agronomic parameters of crops. Pedosphere 14, 467–474 (2004)Google Scholar
  14. 14.
    Li, L.T., Ren, T., Ma, Y., Wei, Q.Q., Wang, S.Q., et al.: Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters. Comput. Electron. Agric. 126, 21–31 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhao, X.W., Abdo, A.M.A., Xu, C., et al.: Dimension reduction of channel correlation matrix using CUR-decomposition technique for 3-D massive antenna system. IEEE Access 6, 3031–3039 (2018)CrossRefGoogle Scholar
  16. 16.
    Memon, I., Chen, L., Arain, Q.A., et al.: Pseudonym changing strategy with multiple mix zones for trajectory privacy protection in road networks. Int. J. Commun. Syst. 31(1), e3437 (2018). CrossRefGoogle Scholar
  17. 17.
    Memon, I., Ali, Q., Zubedi, A., et al.: DPMM: dynamic pseudonym-based multiple mix-zones generation for mobile traveler. Multimed. Tools Appl. 76(22), 24359–24388 (2016)CrossRefGoogle Scholar
  18. 18.
    Arain, Q.A., Memon, H., Memon, I., et al.: Intelligent travel information platform based on location base services to predict user travel behavior from user-generated GPS traces. Int. J. Comput. Appl. 39(3), 155–168 (2017)Google Scholar
  19. 19.
    Chen, G.F., Li, B.B., Li, P.P., et al.: Crop red-edge position algorithm review. Jiangsu Agric. Sci. 2, 12–14 (2009). (in Chinese with English abstract)Google Scholar
  20. 20.
    Mandelbrot, B.B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)CrossRefGoogle Scholar
  21. 21.
    Mandelbrot, B.B.: A multifractal walk down wall street. Sci. Am. 280, 70–73 (1999)CrossRefGoogle Scholar
  22. 22.
    Li, N., Zhao, H., Huang, P., et al.: A novel logistic multi-class supervised classification model based on multi-fractal spectrum parameters for hyperspectral data. Int. J. Comput. Math. 92(4), 836–849 (2015)CrossRefGoogle Scholar
  23. 23.
    Combrexelle, S., Wendt, H., Tourneret, J.Y., et al.: Hyperspectral image analysis using multifractal attributes. In: IEEE GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), (JAP), 2015, p 18Google Scholar
  24. 24.
    Wang, X.Q., Wang, F., Liao, G.P., et al.: Multifractal analysis of rape spectrum and modeling of chlorophyll diagnosis. Spectrosc. Spectr. Anal. 36(11), 3657–3663 (2016). (in Chinese with English abstract)Google Scholar
  25. 25.
    Jiang, S., Wang, F., Shen, L.M., et al.: Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. J. Appl. Phys. 121(10), 104702 (2017)CrossRefGoogle Scholar
  26. 26.
    Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA sequences. Phys. Rev. E 49, 1685–1689 (1994)CrossRefGoogle Scholar
  27. 27.
    Hedayatifar, L., Vahabi, M., Jafari, G.R.: Coupling detrended fluctuation analysis for analyzing coupled nonstationary signals. Phys. Rev. E 84, 021138 (2011)CrossRefGoogle Scholar
  28. 28.
    Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.A.H., Havlin, S., Bunde, A.: Detecting long range correlations with detrended fluctuation analysis. Phys. A 295, 441–454 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Xu, N., Shang, P., Kamae, S.: Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn. 61, 207–216 (2010)CrossRefzbMATHGoogle Scholar
  30. 30.
    Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100(8), 084102 (2008)CrossRefGoogle Scholar
  31. 31.
    Ivanova, K., Ausloos, M.: Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Phys. A 274(1), 349–354 (1999)CrossRefGoogle Scholar
  32. 32.
    Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, et al.: Multifractal detrended fluctuation analysis of non-stationary time series. Phys. A 316(1/2/3/4), 87–114 (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, F., Liao, G.P., Li, J.H., et al.: Multifractal detrended fluctuation analysis for clustering structures of electricity price periods. Phys. A 392(22), 5723–5734 (2013)CrossRefGoogle Scholar
  34. 34.
    Oswiecimka, P., Drozdz, S., Forczek, M., Jadach, S., Kwapien, J.: Detrended cross-correlation analysis consistently extended to multifractality. Phys. Rev. E 89, 023305 (2014)CrossRefGoogle Scholar
  35. 35.
    Wang, F., Liao, G.P., Zhou, X.Y., et al.: Multifractal detrended cross-correlation analysis for power markets. Nonlinear Dyn. 72(1–2), 353–363 (2013)CrossRefGoogle Scholar
  36. 36.
    Wei, Y.L., Yu, Z.G., Zou, H.L., et al.: Multifractal temporally weighted detrended cross-correlation analysis to quantify power-law cross-correlation and its application to stock markets. Chaos 27, 063111 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wang, J., Shang, P.J., Cui, X.R.: Multiscale multifractal analysis of traffic signals to uncover richer structures. Phys. Rev. E 89, 032916 (2014)CrossRefGoogle Scholar
  38. 38.
    Gieraltowski, J., Zebrowski, J.J., Baranowski, R.: Multiscale multifractal analysis of heart rate variability recordings with a large number of occurrences of arrhythmia. Phys. Rev. E 85, 021915 (2012)CrossRefGoogle Scholar
  39. 39.
    Xia, J., Shang, P., Wang, J.: Estimation of local scale exponents for heartbeat time series based on DFA. Nonlinear Dyn. 74(4), 1183–1190 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ihlen, E.A.F., Vereijken, B.: Detection of co-regulation of local structure and magnitude of stride time variability using a new local detrended fluctuation analysis. Gait Posture 39(1), 466–471 (2014)CrossRefGoogle Scholar
  41. 41.
    Wang, F., Li, Z.S., Li, J.W.: Local multifractal detrended fluctuation analysis for non-stationary image’s texture segmentation. Appl. Surf. Sci. 233, 116–25 (2014)Google Scholar
  42. 42.
    Wang, F., Fan, Q.J., Stanley, H.E.: Multiscale multifractal detrended fluctuation analysis of two-dimensional surfaces. Phys. Rev. E 93, 042213 (2016)CrossRefGoogle Scholar
  43. 43.
    Zhu, L.H., Chen, Z.X., Wang, J.J., et al.: Monitoring plant response to phenanthrene using red-edge of canopy hyperspectral reflectance. Mar. Pollut. Bull. 86, 332–341 (2014)CrossRefGoogle Scholar
  44. 44.
    Ho, T.K.: Random decision forest. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, Canada, pp. 278–282, 14–18 August 1995Google Scholar
  45. 45.
    Martins, W.P.: Hotelling’s test, multiple t-tests, and uterine artery Doppler evaluation. Ultrasound Obstet. Gynecol. 35(1), 121–121 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Science/Agricultural Mathematical Modeling and Data Processing CenterHunan Agricultural UniversityChangshaChina
  2. 2.Southern Regional Collaborative Innovation Center for Grain and Oil Crops in ChinaChangshaChina

Personalised recommendations