Nonlinear Dynamics

, Volume 93, Issue 2, pp 819–833 | Cite as

FPGA realizations of high-speed switching-type chaotic oscillators using compact VHDL codes

  • Talal Bonny
  • Ahmed S. Elwakil
Original Paper


This paper introduces high-speed FPGA implementations of two different chaotic systems that rely on a switching-type nonlinearity. In particular, the single-switch Jerk system and the two-wing butterfly system (previously implemented only in analog form) are realized on a modular FPGA platform. For each system, two different hardware architectures are described: a parameters-independent architecture and a customized one with fixed parameters that utilizes less FPGA resources and thus has high throughput with the minimum number of clock cycles. Experimental results show that the parameters-independent architecture utilizes 70% more of the FPGA resources, while the customized one achieves a maximum clock frequency 172.5 MHz for the Jerk and 142.6 MHz for the two-wing system.


Switching-type chaotic oscillators Digital chaos generation FPGA 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Elwakil, A.S., Kennedy, M.P.: Chua’s circuit decomposition: a systematic design approach for autonomous chaotic oscillators. J. Frankl. Inst. 337, 251–265 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Elwakil, A.S., Kennedy, M.P.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circuits Syst. I 48, 289–307 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Elwakil, A.S.: Integrator-based circuit-independent chaotic oscillator structure. Chaos 14, 364–369 (2004)CrossRefGoogle Scholar
  4. 4.
    Tlelo-Cuautle, E., Gaona-Hernndez, A., Garc’a-Delgado, J.: Implementation of a chaotic oscillator by designing Chuas diode with CMOS CFOAs. Analog Integr. Circuits Signal Process. 48(8), 159–162 (2006)CrossRefGoogle Scholar
  5. 5.
    Elwakil, A.S., Salama, K.N., Kennedy, M.P.: An equation for generating chaos and its monolithic implementation. Int. J. Bifurc. Chaos 12, 2885–2895 (2002)CrossRefGoogle Scholar
  6. 6.
    Ozoguz, S., Elwakil, A.S.: On the realization of circuit-independent nonautonomous pulse-excited chaotic oscillator circuits. IEEE Trans. Circuits Syst. II 51, 552–556 (2004)CrossRefGoogle Scholar
  7. 7.
    Elwakil, A.S.: Clock-driven chaotic pulse-width generators: an overview and demonstration of power supply attack. Int. J. Bifurc. Chaos 24(6), 1450079–1450086 (2014)CrossRefGoogle Scholar
  8. 8.
    Ozoguz, S., Elwakil, A.S., Ergun, S.: Cross-coupled chaotic oscillators and application to random bit generation. IEE Circuits Devices Syst. 153, 506–510 (2006)CrossRefGoogle Scholar
  9. 9.
    Barakat, M.L., Mansingka, A.S., Radwan, A.G., Salama, K.N.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process. 8(1), 33–43 (2014)CrossRefGoogle Scholar
  10. 10.
    Shukla, P.K., Khare, A., Rizvi, M.A., et al.: Applied cryptography using chaos function for fast digital logic-based systems in ubiquitous computing. Entropy 17, 1387–1410 (2015)CrossRefGoogle Scholar
  11. 11.
    Tolba, M.F., AbdelAty, A.M., Soliman, N.S., et al.: FPGA implementation of two fractional order chaotic systems. AEU Int. J. Electron. Commun. 78, 162–172 (2017)CrossRefGoogle Scholar
  12. 12.
    De Micco, L., Larrondo, H.A.: Methodology for FPGA implementation of a chaos-based AWGN generator. In: Gazzano, J.D.D. (ed.) Field-Programmable Gate Array (FPGA) Technologies for High Performance Instrumentation. IGI Global, Hershey (2016). Google Scholar
  13. 13.
    Karakaya, B., Celik, V., Gulten, A.: Chaotic cellular neural network-based true random number generator. Int. J. Circuit Theory Appl. (2017). Google Scholar
  14. 14.
    Chen, C., Chen, H., Ma, H., Meng, Y., Ding, Q.: FPGA implementation of a UPT chaotic signal generator for image encryption. Pac. Sci. Rev. A Nat. Sci. Eng. 17(3), 97–102 (2015)Google Scholar
  15. 15.
    Ren, G., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurc. Chaos 27(12), 1750187 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Heidarpur, M., Ahmadi, A., Kandalaft, N.: A digital implementation of 2D Hindmarsh–Rose neuron. Nonlinear Dyn. 89(3), 2259–2272 (2017)CrossRefGoogle Scholar
  17. 17.
    Korkmaz, Nimet, Öztürk, İsmail, Kılıç, Recai: The investigation of chemical coupling in a HR neuron model with reconfigurable implementations. Nonlinear Dyn. 86(3), 1841–1854 (2016)CrossRefGoogle Scholar
  18. 18.
    Abid, A., Nasir, Q., Elwakil, A.S.: Implementation of an encrypted wireless communication system using nested chaotic maps. Int. J. Bifurc. Chaos 20, 4087–4096 (2010)CrossRefGoogle Scholar
  19. 19.
    Tlelo-Cuautle, E., Quintas-Valles, A., de la Fraga, L., et al.: VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLoS ONE 11(12), e0168300 (2016)CrossRefGoogle Scholar
  20. 20.
    Qiu, M., Yu, S., Wen, Y., et al.: Design and FPGA implementation of a universal chaotic signal generator based on the Verilog HDL fixed-point algorithm and state machine control. Int. J. Bifurc. Chaos 27(3), 1750040–1750055 (2017)CrossRefzbMATHGoogle Scholar
  21. 21.
    Bonny, T., Henkel, J.: Efficient code compression for embedded processors. IEEE Trans. Very Large Scale Integr. Syst. 16(12), 1696–1707 (2008)CrossRefGoogle Scholar
  22. 22.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Dieci, L.: Jacobian free computation of Lyapunov exponents. J. Dyn. Differ. Equ. 14(3), 697–717 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Digilent, Inc: (2016). Accessed Oct 2017
  25. 25.
    Inc, X.: 7 Series FPGAs Overview, vol. 1. Xilinx (2014)Google Scholar
  26. 26.
    Xilinx, Vivado design suite—hlx editions (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, College of EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  2. 2.Nanoelectronics Integrated Systems Center (NISC)Nile UniversityCairoEgypt

Personalised recommendations