Skip to main content
Log in

The closed-form motion equation of redundant actuation parallel robot with joint friction: an application of the Udwadia–Kalaba approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The closed-form motion equation of the redundant actuation parallel robot with joint friction is established by an extended application of the Udwadia–Kalaba modeling. Based on the cascading nature of the Udwadia–Kalaba equation, the motion equation of the parallel robot is obtained in a hierarchical manner. The redundant actuation parallel robot is segmented into several leg subsystems, which are connected by the kinematic constraints. The constraint forces between the subsystems can be calculated by the Udwadia–Kalaba equation. In virtue of the derived constraint forces, the explicit joints friction models, described by Coulomb friction and Stribeck friction, are formulated separately. There are no auxiliary variables (such as Lagrange multipliers or pseudo-generalized speeds) needed in the method. The established dynamic modeling technique evades the curse of dimensionality when dealing with Moore–Penrose inverse. A 2-DOF redundant actuation parallel robot is chosen to demonstrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Natal, G.S., Chemori, A., Pierrot, F.: Dual-space control of extremely fast parallel manipulators: payload changes and the 100G experiment. IEEE Trans. Control Syst. Technol. 23(4), 1520–1535 (2015)

    Article  Google Scholar 

  2. Liang, D., Song, Y.M., Sun, T., Dong, G.: Optimum design of a novel redundantly actuated parallel manipulator with multiple actuation modes for high kinematic and dynamic performance. Nonlinear Dyn. 83(1–2), 631–658 (2016)

    Article  MathSciNet  Google Scholar 

  3. Liu, J.G., Li, Y.M., Zhang, Y., Gao, Q., Zou, B.: Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dyn. 76(3), 1737–1751 (2014)

    Article  MathSciNet  Google Scholar 

  4. Prashant, K.J., Sheng, Q., Shahid, H., John, G.P.: An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE Trans. Mechatron. 19(1), 64–75 (2014)

    Article  Google Scholar 

  5. Kobler, J.-P., Nuelle, K., Lexow, G.J., et al.: Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Int. J. Comput. Assist. Radiol. Surg. 11(3), 421–436 (2016)

    Article  Google Scholar 

  6. Bebek, Q., Hwang, M.J., Cenk, M.: Design of a parallel robot for needle-based interventions on small animals. IEEE/ASME Trans. Mechatron. 18(1), 62–73 (2013)

    Article  Google Scholar 

  7. Li, T.M., Jia, S., Wu, J.: Dynamic model of a 3-DOF redundantly actuated parallel manipulator. Int. J. Adv. Rob. Syst. 13(5), 1–12 (2016)

    Google Scholar 

  8. Akbarzadeh, A., Enferadi, J., Sharifnia, M.: Dynamics analysis of a 3-RRP spherical parallel manipulator using the natural orthogonal complement. Multibody Syst. Dyn. 29(4), 361–380 (2013)

    Article  MathSciNet  Google Scholar 

  9. Wang, Z.L., Zhang, N.B., Chai, X.X., Li, Q.C.: Kinematic/dynamic analysis and optimization of a 2-URR-RRU parallel manipulator. Nonlinear Dyn. 88(1), 503–519 (2017)

    Article  MATH  Google Scholar 

  10. Wu, G.L., Caro, S., Bai, S.P., Kepler, J.: Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator. Robot. Auton. Syst. 62(10), 1377–1386 (2014)

    Article  Google Scholar 

  11. Yen, P.L., Lai, C.C.: Dynamic modeling and control of a 3-DOF Cartesian parallel manipulator. IEEE/ASME Trans. Mechatron. 9(3), 390–398 (2009)

    Google Scholar 

  12. Yiu, Y.K., Cheng, H., Xiong, Z.H., Liu, G.F., Li, Z.X.: On the dynamics of parallel manipulators. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 4, pp. 3766–3711 (2001)

  13. Abedloo, E., Molaei, A., Taghirad, H.D.: Closed-Form Dynamic Formulation of Spherical Parallel Manipulators by Gibbs–Appell Method. RSI/ISM International Conference on Robotics and Mechatronics. https://doi.org/10.1109/ICRoM.2014.6990964

  14. Yang, J.F., Xu, Z.B., Wu, Q.W., Qin, C.: Dynamic modeling and control of a 6-DOF micro-vibration simulator. Mech. Mach. Theory 104, 350–369 (2016)

    Article  Google Scholar 

  15. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on The Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  16. Zhang, Q.H., Zhang, X.X.: Dynamic analysis of planar 3-RRR flexible parallel robots under uniform temperature change. Shock Vib. 21(1), 154–159 (2015)

    MathSciNet  Google Scholar 

  17. Carbonari, L., Battistelli, M., Callegari, M., Palpacelli, M.: Dynamic modelling of a 3-CPU parallel robot via screw theory. Int. J. Mech. Sci. 4(1), 185–197 (2013)

    Google Scholar 

  18. Su, Y.X., Duan, B.Y., Zheng, C.H., et al.: Disturbance-rejection high-precision motion control of a Stewart platform. IEEE Trans. Control Syst. Technol. 12(3), 364–374 (2004)

    Article  Google Scholar 

  19. Kim, H.S., Cho, Y.M., Lee, K.-I.: Robust nonlinear task space control for 6 DOF parallel manipulator. Automatica 41(9), 1591–1600 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vinoth, V., Singh, Y., Santhakumar, M.: Indirect disturbance compensation control of a planar parallel (2-PRP and 1-PPR) robotic manipulator. Robot. Comput. Integr. Manuf. 30(5), 556–564 (2014)

    Article  Google Scholar 

  21. Ryu, J.-H., Song, J., Kwon, D.-S.: A nonlinear friction compensation method using adaptive control and its practical application to an in-parallel actuated 6-DOF manipulator. Control Eng. Pract. 9(2), 159–167 (2001)

    Article  Google Scholar 

  22. Cheng, C., Xu, W., Shang, J.: Distributed-torque-based independent joint tracking control of a redundantly actuated parallel robot with two higher kinematic pairs. IEEE Trans. Industr. Electron. 63(2), 1062–1070 (2016)

    Article  Google Scholar 

  23. Shang, W.W., Cong, S., Zhang, Y.X.: Nonlinear friction compensation of a 2-DOF planar parallel manipulator. IEEE/ASME Trans. Mechatron. 18(7), 340–346 (2008)

    Google Scholar 

  24. Shiau, T.-N., Tsai, Y.-J., Tsai, M.-S.: Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects. Mech. Mach. Theory 43(4), 491–505 (2008)

    Article  MATH  Google Scholar 

  25. Yuan, W.-H., Tsai, M.-S.: A novel approach for forward dynamic analysis of 3-PRS parallel manipulator with consideration of friction effect. Robot. Comput. Integr. Manuf. 30(3), 315–325 (2014)

    Article  Google Scholar 

  26. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  27. Udwadia, F.E., Kalaba, R.E.: Equations of motion for constrained mechanical systems and the extended D’Alembert’s principle. Q. Appl. Math. 4(2), 321–331 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Udwadia, F.E., Kalaba, R.E.: Nonideal constraints and Lagrangian dynamics. J. Aerosp. Eng. 13(1), 17–22 (2000)

    Article  Google Scholar 

  29. Udwadia, F.E., Kalaba, R.E.: What is the general form of the explicit equations of motion for constrained mechanical systems? J. Appl. Mech. 69(3), 335–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. Math. Phys. Sci. 462, 2097C2117 (2006)

  31. Udwadia, F.E., Kalaba, R.E.: Analytical dynamics with constraint forces that do work in virtual displacements. Appl. Math. Comput. 121(2–3), 211–217 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Schutte, A.D., Dooley, B.A.: Constrained motion of tethered satellites. J. Aerosp. Eng. 18, 242–250 (2005)

    Article  Google Scholar 

  33. Zhang, B., Zhen, S., Zhao, H., et al.: A novel study on Kepler’s law and inverse square law of gravitation. Eur. J. Phys. 36(3), 035018 (2015)

    Article  MATH  Google Scholar 

  34. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  35. Bellman, R.: Introduction to Matrix Analysis. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  36. Papastavridis, J.G., Yagasaki, K.: Analytical mechanics: a comprehensive treatise on the dynamic of constrained systems; for engineers, physicists, and mathematicians. Appl. Mech. Rev. 56(2), 83–91 (2003)

    Article  Google Scholar 

  37. Rosenberg, R.M., Schmitendorf, W.E.: Analytical dynamics of discrete systems. J. Appl. Mech. 45(1), 233 (1978)

    Article  Google Scholar 

  38. Ginsberg, J.H.: Engineering Dynamics. Cambridge University Press, New York (2008)

    MATH  Google Scholar 

  39. Olsson, H., Åström, K.J., Wit, C.C.D., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    Article  MATH  Google Scholar 

  40. Cheng, H., Yiu, Y.K., Li, Z.: Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Trans. Mechatron. 8(4), 483–491 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Ruiying Zhao is supported by National Natural Science Foundation of China (Grant No. 51605038) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JQ5034). Muxuan Pan is supported by Fundamental Research Funds for Central Universities (No. NJ20160020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, J., Pan, M., Zhao, R. et al. The closed-form motion equation of redundant actuation parallel robot with joint friction: an application of the Udwadia–Kalaba approach. Nonlinear Dyn 93, 689–703 (2018). https://doi.org/10.1007/s11071-018-4218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4218-x

Keywords

Navigation