Nonlinear Dynamics

, Volume 93, Issue 2, pp 643–652 | Cite as

Mathematical modelling of nonlinear dynamics generated from modular interconnections in cellular SOS response system

  • Silpa Bhaskaran
  • Achuthsankar S. Nair
Original Paper


Nonlinear dynamics in synthetic biology systems, generated as a consequence of interconnections between biological modules, poses challenges to the objective of engineering biological systems with predictable characteristics. Mathematical models, that often provide accurate descriptions of the biological modules in isolation, fail to capture such nonlinearities that arise in the interconnected modules. Without the modelling and quantification of these nonlinearities, systems biology models cannot be predictable or reliable. Hence it become a key area of focus of systems and synthetic biologists. To this end, we analyse the nonlinearities in the SOS response system, a prime cellular network in bacterial cells that functions to repair the DNA damage. It is shown that the dynamics of the modules in the SOS response system differ in isolation and in integration, and substantial variation is observed when more modules are connected. The interdependence among major modules is quantified, which imparts whether the integrated dynamics is an attenuation or amplification of the isolated dynamics. From a synthetic biology perspective, our study contributes to the effective engineering of biological devices from the integration of biological modules in a bottom-up fashion. Meanwhile, it also complements the investigations on the DNA damage repairing mechanism in living cells.


Biological networks Modularity SOS response system Dynamics Cascaded layering framework Functionality Mutual dynamics Synthetic biology 



This work was funded by Kerala State Council for Science, Technology and Environment (KSCSTE) (Grant Number No. 124/2015/KSCSTE), Government of Kerala, India. We would also like to acknowledge the facilities provided by the Centre for Excellence in Ayur-Informatics Computer Aided Drug Design (Ai-CADD), University of Kerala.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.


  1. 1.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335 (2000)CrossRefGoogle Scholar
  2. 2.
    Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339 (2000)CrossRefGoogle Scholar
  3. 3.
    Bayer, T.S., Smolke, C.D.: Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23(3), 337 (2005)CrossRefGoogle Scholar
  4. 4.
    Levskaya, A., Chevalier, A.A., Tabor, J.J., Simpson, Z.B., Lavery, L.A., Levy, M., Davidson, E.A., Scouras, A., Ellington, A.D., Marcotte, E.M., Voigt, C.A.: Synthetic biology: engineering Escherichia coli to see light. Nature 434(7067), 441 (2005)CrossRefGoogle Scholar
  5. 5.
    Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., Chang, M.C.Y., Withers, S.T., Shiba, Y., Sarpong, R., Keasling, J.D.: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086), 940 (2006)CrossRefGoogle Scholar
  6. 6.
    Del Vecchio, D., Ninfa, A.J., Sontag, E.D.: Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4(1), 161 (2008)Google Scholar
  7. 7.
    Pantoja-Hernández, L., Martínez-García, J.C.: Retroactivity in the context of modularly structured biomolecular systems. Front. Bioeng. Biotechnol. 3, 85 (2015)CrossRefGoogle Scholar
  8. 8.
    Sauro, H.M.: The computational versatility of proteomic signaling networks. Curr. Proteom. 1(1), 67 (2004)CrossRefGoogle Scholar
  9. 9.
    Sauroa, H.M., Kholodenkoc, B.N.: Quantitative analysis of signaling networks. Prog. Biophys. Mol. Biol. 86(1), 5 (2004)CrossRefGoogle Scholar
  10. 10.
    Sauro, H.M., Ingalls, B.: MAPK Cascades as Feedback Amplifiers. ArXiv e-prints (2007)Google Scholar
  11. 11. Accessed 3 October 2012
  12. 12.
    Kreuzer, K.N.: DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb. Perspect. Biol. 5(11), a012674 (2013)CrossRefGoogle Scholar
  13. 13.
    Michel, B.: After 30 years of study, the bacterial SOS response still surprises us. PLoS Biol. 3(7), e255 (2005)CrossRefGoogle Scholar
  14. 14.
    François, P., Hakim, V.: Core genetic module: the mixed feedback loop. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(3), 031908 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Patel, M., Jiang, Q., Woodgate, R., Cox, M.M., Goodman, M.F.: A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit. Rev. Biochem. Mol. Biol. 45(3), 171 (2010)CrossRefGoogle Scholar
  16. 16.
    Witkin, E.M.: Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40(4), 869 (1976)Google Scholar
  17. 17.
    Prescott, T.P., Lang, M., Papachristodoulou, A.: Quantification of interactions between dynamic cellular network functionalities by cascaded layering. PLoS Comput. Biol. 11(5), e1004235 (2015)CrossRefGoogle Scholar
  18. 18.
    Orth, J.D., Thiele, I., Palsson, B.ø: What is flux balance analysis? Nat. Biotechnol. 28(3), 245248 (2010)CrossRefGoogle Scholar
  19. 19.
    Hucka, M.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524 (2003)CrossRefGoogle Scholar
  20. 20.
    Le Novère, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(suppl1), D689 (2006)CrossRefGoogle Scholar
  21. 21.
    Bhaskaran, S., Nair, A.S.: Dynamical impact of autoregulation in SOS response system. In: Proceedings of 2016 NextGen Genomics, Biology, Bioinformatics and Technologies Conference, p. 137 (2016)Google Scholar
  22. 22.
    Janion, C.: Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int. J. Biol. Sci. 4(6), 338 (2008)CrossRefGoogle Scholar
  23. 23.
    Friedman, N., Vardi, S., Ronen, M., Stavans, J.: Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 3(7), e238 (2005)CrossRefGoogle Scholar
  24. 24.
    Stavans, J.: The SOS response of bacteria to DNA damage. In: Dynamics of Complex Interconnected Systems: Networks and Bioprocesses. NATO Science Series II (Mathematics, Physics and Chemistry), vol. 232, pp. 39–47 (2006)Google Scholar
  25. 25.
    Erental, A., Kalderon, Z., Saada, A., Smith, Y., Engelberg-Kulka, H.: Apoptosis-like death, an extreme SOS response in Escherichia coli. MBio 5(4), e01426 (2014)CrossRefGoogle Scholar
  26. 26.
    Cirz, R.T., Chin, J.K., Andes, D.R., de Crècy-Lagard, V., Craig, W.A., Romesberg, F.E.: Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 3(6), e176 (2005)CrossRefGoogle Scholar
  27. 27.
    N.L.M.C. at New York University School of Medicine. Factor preserves DNA integrity in bacteria despite assault from antibiotics: adjusting DNA repair may yield future solutions for antibiotic resistance and degenerative diseases. (2016)
  28. 28.
    Jackson, S.P., Bartek, J.: The DNA-damage response in human biology and disease. Nature 461(7267), 1071 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computational Biology and BioinformaticsUniversity of KeralaTrivandrumIndia

Personalised recommendations