Skip to main content
Log in

Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: an efficient approach based on Lie group

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Heavy-duty industrial robots have great advantages in the manufacturing industry. Considering the heavy process load and low stiffness of the robot, an accurate and efficient dynamic model plays an important role in the behavior analysis and performance improvement in the robot. This paper presents a novel methodology for the inverse dynamic analysis of the heavy-duty industrial robot with elastic joints. In particular, high-order kinematics and dynamics are concisely deduced using Lie group to deal with elastic joints for the robot inverse dynamic analysis. Meanwhile, position errors of the end-effector due to elastic joints are evaluated through the inverse dynamic analysis when the robot is in heavy-duty applications. Compared with previous approaches, the advantage of proposed method is that new formulas for inverse dynamic analysis are shown to be more concise and computationally efficient using Lie group. Moreover, the position error evaluation method considering dynamic forces is proved to be more accurate than the traditional method when the robot is in the high-speed application. Because of the high computational efficiency and accurate evaluation results, the proposed approach is applicable to trajectory optimization and position error compensation, especially for the robot in heavy-load and high-speed applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. You, W., Kong, M., Sun, L., Diao, Y.: Control system design for heavy duty industrial robot. Ind. Robot: Int. J. 39(4), 365–380 (2012)

    Article  Google Scholar 

  2. Guo, Y., Dong, H., Wang, G., Ke, Y.: Vibration analysis and suppression in robotic boring process. Int. J. Mach. Tools Manuf. 101, 102–110 (2016)

    Article  Google Scholar 

  3. Zivanovic, S., Slavkovic, N., Milutinovic, D.: An approach for applying STEP-NC in robot machining. Robot. Comput. Integr. Manuf. 49, 361–373 (2018)

    Article  Google Scholar 

  4. Guillo, M., Dubourg, L.: Impact & improvement of tool deviation in friction stir welding: weld quality & real-time compensation on an industrial robot. Robot. Comput. Integr. Manuf. 39(5), 22–31 (2016)

    Article  Google Scholar 

  5. Backer, J.D., Christiansson, A., Oqueka, J., Bolmsjö, G.: Investigation of path compensation methods for robotic friction stir welding. Ind. Robot: Int. J. 39(6), 601–608 (2012)

    Article  Google Scholar 

  6. Backer, J.D.: Feedback Control of Robotic Friction Stir Welding. Ph.D. Thesis, University West (2014)

  7. Mendes, N., Neto, P., Loureiro, A., Moreira, A.P.: Machines and control systems for friction stir welding: a review. Mater. Des. 90, 256–265 (2016)

    Article  Google Scholar 

  8. Belchior, J., Guillo, M., Courteille, E., Maurine, P., Leotoing, L., Guines, D.: Off-line compensation of the tool path deviations on robotic machining: application to incremental sheet forming. Robot. Comput. Integr. Manuf. 29(4), 58–69 (2013)

    Article  Google Scholar 

  9. Klimchik, A., Pashkevich, A., Chablat, D., Hovland, G.: Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robot. Comput. Integr. Manuf. 29(2), 385–393 (2013)

    Article  Google Scholar 

  10. Klimchik, A., Pashkevich, A.: Serial vs. quasi-serial manipulators: comparison analysis of elasto-static behaviors. Mech. Mach. Theory. 107, 46–70 (2017)

    Article  Google Scholar 

  11. Klimchik, A., Furet, B., Caro, S., Pashkevich, A.: Identification of the manipulator stiffness model parameters in industrial environment. Mech. Mach. Theory 90, 1–22 (2015)

    Article  Google Scholar 

  12. Bres, A., Monsarrat, B., Dubourg, L., Birglen, L., Perron, C., Jahazi, M., Baron, L.: Simulation of friction stir welding using industrial robots. Ind. Robot: Int. J. 37(1), 36–50 (2010)

    Article  Google Scholar 

  13. Bianco, C.G.L., Gerelli, O.: Online trajectory scaling for manipulators subject to high-order kinematic and dynamic constraints. IEEE Trans. Robot. 27(6), 1144–1152 (2011)

    Article  Google Scholar 

  14. Colleoni, D., Miceli, G., Pasquarello, A.: Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. In: IEEE International Conference on Robotics and Automation, pp. 6–10 (2013)

  15. Macfarlane, S., Croft, E.: Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans. Robot. Autom. 19(1), 42–52 (2003)

    Article  Google Scholar 

  16. Bianco, C.G.L.: Evaluation of generalized force derivatives by means of a recursive Newton–Euler approach. IEEE Trans. Robot. 25(4), 954–959 (2009)

    Article  Google Scholar 

  17. Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109(4), 310–318 (1987)

    Article  MATH  Google Scholar 

  18. Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans. Robot. 21(4), 554–564 (2005)

    Article  MATH  Google Scholar 

  19. Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six-revolute industrial serial robots. Robot. Comput. Integr. Manuf. 27(4), 881–888 (2011)

    Article  Google Scholar 

  20. Luca, A.D., Siciliano, B., Zollo, L.: PD control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica 41(10), 1809–1819 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ott, C., Albu-Schaffer, A., Kugi, A., Hirzinger, G.: On the passivity-based impedance control of flexible joint robots. IEEE Trans. Robot. 24(2), 416–429 (2008)

    Article  Google Scholar 

  22. Nanos, K., Papadopoulos, E.G.: On the dynamics and control of flexible joint space manipulators. Cont. Eng. Pract. 45, 230–243 (2015))

  23. Hopler, R., Thümmel, M.: Symbolic computation of the inverse dynamics of elastic joint robots. In: IEEE International Conference on Robotics and Automation, pp. 4314-4319 (2004

  24. Buondonno, G., Luca, A.D.: A recursive Newton–Euler algorithm for robots with elastic joints and its application to control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5526–5532 (2015)

  25. Buondonno, G., Luca, A.D.: Efficient computation of inverse dynamics and feedback linearization for VSA-based robots. IEEE Robot. Autom. Lett. 1(2), 908–915 (2016)

    Article  Google Scholar 

  26. Park, F.C., Bobrow, J.E., Ploen, S.R.: A Lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609–618 (1995)

    Article  Google Scholar 

  27. Selig, J.: Geometrical Methods in Robotics. Springer, New York (2013)

    MATH  Google Scholar 

  28. Craig, J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading (2005)

    Google Scholar 

  29. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  30. Chen, I., Yang, G.: Automatic model generation for modular reconfigurable robot dynamics. J. Dyn. Syst. Meas. Control. 120(3), 346–352 (1998)

    Article  Google Scholar 

  31. ADAMS Software, M.S.: http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx

  32. Googol Technique, G.T.: http://www.googoltech.com

Download references

Acknowledgements

This work is supported by the Major State Basic Research Development Program of China (973 Program, Grant No. 2014CB046704) and National Science and Technology Support Plan (Grant No. 2014BAB13B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyu Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Yang, W. & Wang, C. Inverse dynamic analysis and position error evaluation of the heavy-duty industrial robot with elastic joints: an efficient approach based on Lie group. Nonlinear Dyn 93, 487–504 (2018). https://doi.org/10.1007/s11071-018-4205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4205-2

Keywords

Navigation