Nonlinear Dynamics

, Volume 93, Issue 2, pp 443–451 | Cite as

Robust finite-time tracking control for Euler–Lagrange systems with obstacle avoidance

  • Xuehui Li
  • Shenmin Song
  • Yong Guo
Original Paper


This paper addresses the tracking control problem of Euler–Lagrange systems with external disturbances in an environment containing obstacles. Based on a novel sliding manifold, a new asymptotic tracking controller is proposed to ensure the tracking errors converge to zero as time goes to infinity. Moreover, based on a modified nonsingular terminal sliding manifold, a finite-time convergent control algorithm is also developed to make sure the tracking errors converge to a small bounded area near the origin in finite time. Through introducing collision avoidance functions into the sliding manifolds, both controllers can guarantee the obstacle avoidance. Moreover, the stability of the closed-loop systems and approaches free of local minima have been rigorously analyzed. Finally, numerical simulations are carried out to demonstrate the effectiveness of the proposed strategies.


Tracking control Obstacle avoidance Sliding mode control Finite-time control 



The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China under Grant 61174037 and the State Key Program of National Natural Science of China under Grant NSFC-61333003.


  1. 1.
    Xian, B., Diao, C., Zhao, B., Zhang, Y.: Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn. 79, 2735–2752 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pan, H.J., Ming, X.: Nonlinear robust and optimal control of robot manipulators. Nonlinear Dyn. 76, 237–254 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lopez, I., McInnes, C.R.: Autonomous rendezvous using artificial potential function guidance. J. Guidance Control Dyn. 18, 237–241 (1995)CrossRefGoogle Scholar
  4. 4.
    Sakurama, K., Nakano, K.: Path tracking control of Lagrange systems with obstacle avoidance. Int. J. Control Autom. Syst. 10, 50–60 (2012)CrossRefGoogle Scholar
  5. 5.
    Weiss, A., Petersen, C., Baldwin, M., Erwin, R.S., Kolmanovsky, I.: Safe positively invariant sets for spacecraft obstacle avoidance. J. Guidance Control Dyn. 38, 720–732 (2014)CrossRefGoogle Scholar
  6. 6.
    Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: IEEE Conference on Robotics and Automation, pp. 1398–1404. Sacramento, (1991)Google Scholar
  7. 7.
    Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8, 501–518 (1992)CrossRefGoogle Scholar
  8. 8.
    Wen, J.T.Y., Kreutz-Delgado, K.: The attitude control problem. IEEE Trans. Autom. Control 36, 1148–1162 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ali, I., Radice, G., Kim, J.: Backstepping control design with actuator torque bound for spacecraft attitude maneuver. J. Guid. Control Dyn. 33, 254–259 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhai, D.H., Xia, Y.: Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays. Int. J. Robust Nonlinear Control 26, 2586–2607 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhai, D.H., Xia, Y.: Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties. IEEE Trans. Cybern. 47(11), 3621–3633 (2016)CrossRefGoogle Scholar
  12. 12.
    Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lu, K.F., Xia, Y.Q.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591–3599 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guo, Y., Song, S.M., Li, X.H.: Quaternion-based finite-time control for attitude tracking of the spacecraft without unwinding. Int. J. Control Autom. Syst. 13, 1351–1359 (2015)CrossRefGoogle Scholar
  15. 15.
    Chen, Y.P., Lo, S.C.: Sliding-mode controller design for spacecraft attitude tracking maneuvers. IEEE Trans. Aerosp. Electron. Syst. 29, 1328–1333 (1993)CrossRefGoogle Scholar
  16. 16.
    Guldner, J., Utkin, V.I.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE Trans. Robot. Autom. 11, 247–254 (1995)CrossRefGoogle Scholar
  17. 17.
    Gazi, V., Ordnez, R.: Target tracking using artificial potentials and sliding mode control. Int. J. Control 80, 1626–1635 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38, 751–766 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, Y., Yang, Y., Zhao, Y., Wen, G.H.: Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances. Int. J. Control 86, 29–40 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhao, Y., Li, Z., Duan, Z.: Distributed consensus tracking of multi-agent systems with nonlinear dynamics under a reference leader. Int. J. Control 86, 1859–1869 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ou, M., Du, H., Li, S.: Finite-time tracking control of multiple nonholonomic mobile robots. J. Frankl. Inst. 349, 2834–2860 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, S.H., Wang, X.Y.: Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49, 3359–3367 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhou, N., Xia, Y.Q.: Coordination control of multiple EulerCLagrange systems for escorting mission. Int. J. Robust Nonlinear Control 25, 3596–3616 (2015)CrossRefzbMATHGoogle Scholar
  24. 24.
    Chen, J., Gan, M.G., Huang, J., Dou, L.H., Fang, H.: Formation control of multiple Euler–Lagrange systems via null-space-based behavioral control. Sci. China Inf. Sci. 59, 1–11 (2016)Google Scholar
  25. 25.
    Fischer, N., Dani, A., Sharma, N., Dixon, W.E.: Saturated control of an uncertain nonlinear system with input delay. Automatica 49, 1741–1747 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Control Theory and Guidance TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.School of AutomationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations