Global trajectory tracking control of underactuated surface vessels with non-diagonal inertial and damping matrices

Original Paper
  • 38 Downloads

Abstract

This paper investigates the tracking control problem of underactuated surface vessels with non-diagonal inertia and damping matrices. Based on the inherent cascaded structure of vessel dynamics and the cascaded system theory, the tacking control problem of vessels is converted to the stabilization control problem of two cascaded subsystems. Two trajectory tracking control laws are designed respectively for known and unknown model parameters. The first feedback control law is derived with the aid of Lyapunov method, realizing the global \({\mathscr {K}}\)-exponential trajectory tracking of vessels with accurate model parameters. As all the state variables in the first law are independent of model parameters, the sliding mode technique is applied to extend the first control scheme to the case of unknown model parameters, resulting into an another tracking control law, which ensures the global \({\mathscr {K}}\)-exponential stability of the closed-loop error system despite unknown model parameters. Effectiveness of the proposed controllers is demonstrated by numerical simulations.

Keywords

Underactuated surface vessels Tracking control Global \({\mathscr {K}}\)-exponential stability 

Notes

Acknowledgements

This work was supported by Fundamental and Frontier Research Project of Chongqing (No. cstc2016jcyjA0404), National Nature Science Foundation of China (No. 61573034, No. 61327807), and Fundamental Research Funds for the Central Universities (XDJK2016C038, SWU115046).

References

  1. 1.
    Zheng, Z., Huang, Y., Xie, L., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. (2017).  https://doi.org/10.1109/TCST.2017.2728518
  2. 2.
    Zheng, Z., Sun, L., Xie, L.: Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2717850
  3. 3.
    Ma, B.: Global \(\kappa \)-exponential asymptotic stabilization of underactuated surface vessels. Syst. Control Lett. 58(3), 194–201 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ma, B., Huo, W.: Smooth time-varying uniform asymptotic stabilization of underactuated surface vessels. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference (2009)Google Scholar
  5. 5.
    Xie, W., Ma, B.: Robust position stabilization of underactuated surface vessels with unknown modeling parameters via simple P/D-like feedback: the center manifold approach. Asian J. Control 17(4), 1222–1232 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Xie, W., Ma, B.: Robust global uniform asymptotic stabilization of underactuated surface vessels with unknown model parameters. Int. J. Robust Nonlinear Control 25(7), 1037–1050 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. 22(6), 2564–2575 (2017)CrossRefGoogle Scholar
  8. 8.
    Xie, W., Ma, B., Fernando, T., Iu, H.H.C.: A simple robust control for global asymptotic position stabilization of underactuated surface vessels. Int. J. Robust Nonlinear Control 27(18), 5028–5043 (2017)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Xie, W., Ma, B., Fernando, T., Iu, H.H.C.: A new formation control of multiple underactuated surface vessels. Int. J. Control 91(5), 1011–1022 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Do, K.D., Jiang, Z.P., Pan, J.: Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control 47(9), 1529–1536 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica 38(2), 301–309 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Do, K.D., Jiang, Z.P., Pan, J., Nijmeijer, H.: A global output-feedback controller for stabilization and tracking of underactuated ODIN: a spherical underwater vehicle. Automatica 40(1), 117–124 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chwa, D.: Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method. IEEE Trans. Control Syst. Technol. 19(6), 1357–1370 (2011)CrossRefGoogle Scholar
  14. 14.
    Do, K.D., Jiang, Z.P., Pan, J.: Universal controllers for stabilization and tracking of underactuated ships. Syst. Control Lett. 47(4), 299–317 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans. Control Syst. Technol. 11(1), 52–61 (2003)CrossRefGoogle Scholar
  16. 16.
    Wang, K., Liu, Y., Li, L.: Vision-based tracking control of underactuated water surface robots without direct position measurement. IEEE Trans. Control Syst. Technol. 23(6), 2391–2399 (2015)CrossRefGoogle Scholar
  17. 17.
    Ghommam, J., Mnif, F., Derbel, N.: Global stabilisation and tracking control of underactuated surface vessels. IET Control Theory Appl. 4(1), 71–88 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yan, Z., Wang, J.: Model predictive control for tracking of underactuated vessels based on recurrent neural networks. IEEE J. Ocean. Eng. 37(4), 717–726 (2012)CrossRefGoogle Scholar
  19. 19.
    Behal, A., Dawson, D.M., Dixon, W.E., Fang, Y.: Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control 47(3), 495–500 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J. Control 74(14), 1435–1446 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wu, Y., Zhang, Z., Xiao, N.: Global tracking controller for underactuated ship via switching design. J. Dyn. Syst. Meas. Control 136(5), 054506 (2014)CrossRefGoogle Scholar
  22. 22.
    Yu, R., Zhu, Q., Xia, G., Liu, Z.: Sliding mode tracking control of an underactuated surface vessel. IET Control Theory Appl. 6(3), 461–466 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ashrafiuon, H., Muske, K.R., McNinch, L.C., Soltan, R.A.: Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron. 55(11), 4004–4012 (2008)CrossRefGoogle Scholar
  24. 24.
    Elmokadem, T., Zribi, M., Youcef-Toumi, K.: Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn. 84(2), 1079–1091 (2016)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Do, K.D., Pan, J.: Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica 41(1), 87–95 (2005)MathSciNetMATHGoogle Scholar
  26. 26.
    Park, B.S., Kwon, J.W., Kim, H.: Neural network-based output feedback control for reference tracking of underactuated surface vessels. Automatica 77, 353–359 (2017)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ma, B., Xie, W.: Global asymptotic trajectory tracking and point stabilization of asymmetric underactuated ships with non-diagonal inertia/damping matrices. Int. J. Adv. Robot. Syst. 10(9), 336 (2013)CrossRefGoogle Scholar
  28. 28.
    Zhang, Z., Wu, Y.: Further results on global stabilisation and tracking control for underactuated surface vessels with non-diagonal inertia and damping matrices. Int. J. Control 88(9), 1679–1692 (2015)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Xie, W., Sun, H., Ma, B.: Global asymptotic tracking of asymmetrical underactuated surface vessels with parameter uncertainties. J. Control Theory Appl. 11(4), 608–614 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Jia, Y.: Robust control with decoupling performance for steering and traction of 4ws vehicles under velocity-varying motion. IEEE Trans. Control Syst. Technol. 8(3), 554–569 (2000)CrossRefGoogle Scholar
  31. 31.
    Zhang, H., Wang, J.: Adaptive sliding-mode observer design for a selective catalytic reduction system of ground-vehicle diesel engines. IEEE/ASME Trans. Mechatron. 21(4), 2027–2038 (2016)CrossRefGoogle Scholar
  32. 32.
    Zhang, H., Wang, J.: Active steering actuator fault detection for an automatically-steered electric ground vehicle. IEEE Trans. Veh. Technol. 66(5), 3685–3702 (2017)Google Scholar
  33. 33.
    Chen, Y., Ma, B., Xie, W.: Robust stabilization of nonlinear PVTOL aircraft with parameter uncertainties. Asian J. Control 19(3), 1239–1249 (2017)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Fossen, T.I., Grovlen, A.: Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Technol. 6(1), 121–128 (1998)CrossRefGoogle Scholar
  35. 35.
    Breivik, M., Fossen, T.I.: Motion control concepts for trajectory tracking of fully actuated ships. In: Proceedings of the 7th IFAC MCMC (2006)Google Scholar
  36. 36.
    Lefeber, A.A.J.: Tracking control of nonlinear mechanical systems. Universiteit Twente, Eindhove, The Netherlands (2000)Google Scholar
  37. 37.
    Khalil, H.K.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle River (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer and Information ScienceSouthwest UniversityChongqingChina
  2. 2.The Seventh Research Division, School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina

Personalised recommendations