Modeling and analysis of under-load-based cascading failures in supply chain networks

Original Paper
  • 6 Downloads

Abstract

The phenomena of cascading failures often happen in complex networks. In most infrastructure networks, the subsequent failures of nodes are caused by overload and many overload cascading failure models are developed. Recently, some of these models are adopted to investigate the cascading failure phenomenon in supply chain networks, which cannot capture the real case very well. The subsequent failures of upriver/downriver firms in supply chain networks are triggered by the decreased product demand/material supply, i.e., under-load cascading failures take place. Based on the under-load failures, this paper proposed a more realistic cascading failure model for supply chain networks. In this model, the node firms are characterized by capacities with upper bound parameter \(\alpha \) and lower bound parameter \(\beta \). Results showed that \(\alpha \) has a negative relationship with cascading size, while \(\beta \) has a positive relationship with cascading size. In addition, cascading size is mainly determined by \(\beta \), and \(\alpha \) helps mitigate the cascading propagation. In reality, \(\alpha \) is correlated with the spare production capacity of firms, the holding cost of which is high under stable operation of the market. \(\beta \) is related to the core competence of firms, which is hard to improve in the short term. Our work may be helpful for developing the cascade control and defense strategies in supply chain networks.

Keywords

Cascading failure Supply chain network Under-load Load capacity 

Notes

Acknowledgements

We gratefully acknowledge helpful suggestions from the anonymous reviewers. This work is supported by the National Natural Science Foundation of China (Grant No. 61702463) and the Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry.

Compliance with ethical standards

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

References

  1. 1.
    Zheng, J.F., Gao, Z.Y., Zhao, X.M.: Modeling cascading failures in congested complex networks. Physica A 385(2), 700–706 (2007)CrossRefGoogle Scholar
  2. 2.
    Qian, Y., Wang, B., Xue, Y., Zeng, J., Wang, N.: A simulation of the cascading failure of a complex network model by considering the characteristics of road traffic conditions. Nonlinear Dyn. 80(1–2), 413–420 (2015)CrossRefGoogle Scholar
  3. 3.
    Wang, J., Liu, Y.H., Zhu, J.Q., Jiao, Y.: Model for cascading failures in congested Internet. J. Zhejiang. Univ. SC. A 9(10), 1331–1335 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Ren, H.P., Song, J., Yang, R., Baptista, M.S., Grebogi, C.: Cascade failure analysis of power grid using new load distribution law and node removal rule. Physica A 442, 239–251 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Seo, J., Mishra, S., Li, X., Thai, M.T.: Catastrophic cascading failures in power networks. Theor. Comput. Sci. 607, 306–319 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Yin, R.R., Liu, B., Liu, H.R., Li, Y.Q.: The critical load of scale-free fault-tolerant topology in wireless sensor networks for cascading failures. Physica A 409, 8–16 (2014)CrossRefGoogle Scholar
  7. 7.
    Liu, H.R., Dong, M.R., Yin, R.R., Han, L.: Cascading failure in the wireless sensor scale-free networks. Chinese Phys. B 24(5), 050506 (2015)CrossRefGoogle Scholar
  8. 8.
    Shuang, Q., Zhang, M., Yuan, Y.: Node vulnerability of water distribution networks under cascading failures. Reliab. Eng. Syst. Safe. 124, 132–141 (2014)CrossRefGoogle Scholar
  9. 9.
    Wu, J.J., Sun, H.J., Gao, Z.Y.: Cascading failures on weighted urban traffic equilibrium networks. Physica A 386(1), 407–413 (2007)CrossRefGoogle Scholar
  10. 10.
    Guimera, R., Arenas, A., Díaz-Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66(2), 026704 (2002)CrossRefGoogle Scholar
  11. 11.
    Sachtjen, M.L., Carreras, B.A., Lynch, V.E.: Disturbances in a power transmission system. Phys. Rev. E 61(5), 4877 (2000)CrossRefGoogle Scholar
  12. 12.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002)CrossRefGoogle Scholar
  13. 13.
    Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, J., Zhang, C., Huang, Y., Xin, C.: Attack robustness of cascading model with node weight. Nonlinear Dyn. 78(1), 37–48 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, S., Li, L., Yang, Y., Luo, Q.: Revealing the process of edge-based-attack cascading failures. Nonlinear Dyn. 69(3), 837–845 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, J.: Mitigation of cascading failures on complex networks. Nonlinear Dyn. 70(3), 1959–1967 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jun, L., Xiong, Q.Y., Shi, X., Wang, K., Shi, W.R.: Load-redistribution strategy based on time-varying load against cascading failure of complex network. Chinese Phys. B 24(7), 076401 (2015)CrossRefGoogle Scholar
  18. 18.
    Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure. Physica A 380, 673–683 (2007)CrossRefGoogle Scholar
  19. 19.
    Kim, D.H., Motter, A.E.: Fluctuation-driven capacity distribution in complex networks. New J. Phys. 10(5), 053022 (2008)CrossRefGoogle Scholar
  20. 20.
    Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inform. Sci. 279, 396–415 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ivanov, D.: An adaptive framework for aligning (re) planning decisions on supply chain strategy, design, tactics, and operations. Int. J. Prod. Res. 48(13), 3999–4017 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logist. Manag. 15(2), 1–14 (2004)CrossRefGoogle Scholar
  23. 23.
    Blackhurst, J., Wu, T., O’grady, P.: A network-based decision tool to model uncertainty in supply chain operations. Prod. Plan Control 18(6), 526–535 (2007)CrossRefGoogle Scholar
  24. 24.
    Bellamy, M., Basole, R.: Network analysis of supply chain systems: a systematic review and future research. Syst. Eng. 16(2), 235–249 (2013)CrossRefGoogle Scholar
  25. 25.
    Rice, J.B., Caniato, F.: Building a secure and resilient supply network. Supply Chain Manag. Rev. 7(5), 22–30 (2003)Google Scholar
  26. 26.
    Jüttner, U., Maklan, S.: Supply chain resilience in the global financial crisis: an empirical study. Supply Chain Manag. 16(4), 246–259 (2011)CrossRefGoogle Scholar
  27. 27.
    Hearnshaw, E., Wilson, M.: A complex network approach to supply chain network theory. Int. J. Oper. Prod. Man. 33(4), 442–469 (2013)CrossRefGoogle Scholar
  28. 28.
    Tang, L., Jing, K., He, J., Stanley, H.E.: Robustness of assembly supply chain networks by considering risk propagation and cascading failure. Physica A 459, 129–139 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yan, Y., Liu, X., Zhuang, X.T.: Cascading failure model and method of supply chain based on complex network. J. Shanghai Jiaotong Univ. 44(3), 322–325 (2010)MATHGoogle Scholar
  30. 30.
    Zeng, Y., Xiao, R.B.: Modelling of cluster supply network with cascading failure spread and its vulnerability analysis. Int. J. Prod. Res. 52(23), 6938–6953 (2014)CrossRefGoogle Scholar
  31. 31.
    Geng, L., Xiao, R.B., Xie, S.S.: Research on self-organization in resilient recovery of cluster supply chains. Discrete Dyn. Nat. Soc. 2013, 1–11 (2013)CrossRefGoogle Scholar
  32. 32.
    Tang, L., Jing, K., He, J., Stanley, H.E.: Complex interdependent supply chain networks: cascading failure and robustness. Physica A 443, 58–69 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wang, Y.C., Xiao, R.B.: An ant colony based resilience approach to cascading failures in cluster supply network. Physica A 462, 150–166 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Sheffi, Y.: Supply chain management under the threat of international terrorism. Int. J. Logist. Manag. 12(2), 1–11 (2001)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Norrman, A., Jansson, U.: Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manag. 34(5), 434–456 (2004)CrossRefGoogle Scholar
  36. 36.
    Pettit, T.J., Fiksel, J., Croxton, K.L.: Ensuring supply chain resilience: development of a conceptual framework. J. Bus. Logist. 31(1), 1–21 (2010)CrossRefGoogle Scholar
  37. 37.
    Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)CrossRefGoogle Scholar
  38. 38.
    Macdonald, P.J., Almaas, E., Barabási, A.L.: Minimum spanning trees of weighted scale-free networks. EPL Europhys. Lett. 72(2), 308 (2005)CrossRefGoogle Scholar
  39. 39.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Physica A 424, 175–308 (2006)MathSciNetMATHGoogle Scholar
  40. 40.
    Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9), 098701 (2004)CrossRefGoogle Scholar
  41. 41.
    Duan, D.L., Ling, X.D., Wu, X.Y., OuYang, D.H., Zhong, B.: Critical thresholds for scale-free networks against cascading failures. Physica A 416, 252–258 (2014)CrossRefGoogle Scholar
  42. 42.
    Duan, D.L., Wu, X.Y.: Cascading failure of scale-free networks based on a tunable load redistribution model. Acta Phys. Sin. 63(3), 030501 (2014)Google Scholar
  43. 43.
    Wang, J.W., Rong, L.L.: A model for cascading failures in scale-free networks with a breakdown probability. Physica A 388, 1289–1298 (2009)CrossRefGoogle Scholar
  44. 44.
    Liu, J., Xiong, Q., Shi, X., Wang, K., Shi, W.: Robustness of complex networks with an improved breakdown probability against cascading failures. Physica A 456, 302–309 (2016)CrossRefGoogle Scholar
  45. 45.
    Chopra, S., Sodhi, M.: Managing risk to avoid supply-chain breakdown. MIT Sloan Manag. Rev. 46(1), 53–61 (2004)Google Scholar
  46. 46.
    Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B 46(1), 101–107 (2005)CrossRefGoogle Scholar
  47. 47.
    Crucitti, P., Latora, V., Marchiori, M.: A topological analysis of the Italian electric power grid. Physica A 338(1), 92–97 (2004)CrossRefGoogle Scholar
  48. 48.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)CrossRefGoogle Scholar
  49. 49.
    Choi, T.Y., Hong, Y.: Unveiling the structure of supply networks: case studies in Honda, Acura, and DaimlerChrysler. J. Oper. Manag. 20(5), 469–493 (2002)CrossRefGoogle Scholar
  50. 50.
    Hur, D., Hartley, J.K., Hahn, C.K.: An exploration of supply chain structure in Korean companies. Int. J. Logist. Res. App. 7(2), 151–164 (2004)CrossRefGoogle Scholar
  51. 51.
    Sun, H., Wu, J.: Scale-free characteristics of supply chain distribution networks. Mod. Phys. Lett. B 19(17), 841–850 (2005)CrossRefGoogle Scholar
  52. 52.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Klemm, K., Eguiluz, V.M.: Growing scale-free networks with small-world behavior. Phys. Rev. E 65(5), 057102 (2002)CrossRefGoogle Scholar
  54. 54.
    Cardoso, S.R., Barbosa-Póvoa, A.P., Relvas, S., Novais, A.Q.: Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega 56, 53–73 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.Otis Electric Elevator Co., LtdHangzhouChina

Personalised recommendations