Skip to main content
Log in

Modeling and analysis of under-load-based cascading failures in supply chain networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The phenomena of cascading failures often happen in complex networks. In most infrastructure networks, the subsequent failures of nodes are caused by overload and many overload cascading failure models are developed. Recently, some of these models are adopted to investigate the cascading failure phenomenon in supply chain networks, which cannot capture the real case very well. The subsequent failures of upriver/downriver firms in supply chain networks are triggered by the decreased product demand/material supply, i.e., under-load cascading failures take place. Based on the under-load failures, this paper proposed a more realistic cascading failure model for supply chain networks. In this model, the node firms are characterized by capacities with upper bound parameter \(\alpha \) and lower bound parameter \(\beta \). Results showed that \(\alpha \) has a negative relationship with cascading size, while \(\beta \) has a positive relationship with cascading size. In addition, cascading size is mainly determined by \(\beta \), and \(\alpha \) helps mitigate the cascading propagation. In reality, \(\alpha \) is correlated with the spare production capacity of firms, the holding cost of which is high under stable operation of the market. \(\beta \) is related to the core competence of firms, which is hard to improve in the short term. Our work may be helpful for developing the cascade control and defense strategies in supply chain networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zheng, J.F., Gao, Z.Y., Zhao, X.M.: Modeling cascading failures in congested complex networks. Physica A 385(2), 700–706 (2007)

    Article  Google Scholar 

  2. Qian, Y., Wang, B., Xue, Y., Zeng, J., Wang, N.: A simulation of the cascading failure of a complex network model by considering the characteristics of road traffic conditions. Nonlinear Dyn. 80(1–2), 413–420 (2015)

    Article  Google Scholar 

  3. Wang, J., Liu, Y.H., Zhu, J.Q., Jiao, Y.: Model for cascading failures in congested Internet. J. Zhejiang. Univ. SC. A 9(10), 1331–1335 (2008)

    Article  MATH  Google Scholar 

  4. Ren, H.P., Song, J., Yang, R., Baptista, M.S., Grebogi, C.: Cascade failure analysis of power grid using new load distribution law and node removal rule. Physica A 442, 239–251 (2016)

    Article  MathSciNet  Google Scholar 

  5. Seo, J., Mishra, S., Li, X., Thai, M.T.: Catastrophic cascading failures in power networks. Theor. Comput. Sci. 607, 306–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yin, R.R., Liu, B., Liu, H.R., Li, Y.Q.: The critical load of scale-free fault-tolerant topology in wireless sensor networks for cascading failures. Physica A 409, 8–16 (2014)

    Article  Google Scholar 

  7. Liu, H.R., Dong, M.R., Yin, R.R., Han, L.: Cascading failure in the wireless sensor scale-free networks. Chinese Phys. B 24(5), 050506 (2015)

    Article  Google Scholar 

  8. Shuang, Q., Zhang, M., Yuan, Y.: Node vulnerability of water distribution networks under cascading failures. Reliab. Eng. Syst. Safe. 124, 132–141 (2014)

    Article  Google Scholar 

  9. Wu, J.J., Sun, H.J., Gao, Z.Y.: Cascading failures on weighted urban traffic equilibrium networks. Physica A 386(1), 407–413 (2007)

    Article  Google Scholar 

  10. Guimera, R., Arenas, A., Díaz-Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66(2), 026704 (2002)

    Article  Google Scholar 

  11. Sachtjen, M.L., Carreras, B.A., Lynch, V.E.: Disturbances in a power transmission system. Phys. Rev. E 61(5), 4877 (2000)

    Article  Google Scholar 

  12. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002)

    Article  Google Scholar 

  13. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)

    Article  Google Scholar 

  14. Wang, J., Zhang, C., Huang, Y., Xin, C.: Attack robustness of cascading model with node weight. Nonlinear Dyn. 78(1), 37–48 (2014)

    Article  MathSciNet  Google Scholar 

  15. Li, S., Li, L., Yang, Y., Luo, Q.: Revealing the process of edge-based-attack cascading failures. Nonlinear Dyn. 69(3), 837–845 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wang, J.: Mitigation of cascading failures on complex networks. Nonlinear Dyn. 70(3), 1959–1967 (2012)

    Article  MathSciNet  Google Scholar 

  17. Jun, L., Xiong, Q.Y., Shi, X., Wang, K., Shi, W.R.: Load-redistribution strategy based on time-varying load against cascading failure of complex network. Chinese Phys. B 24(7), 076401 (2015)

    Article  Google Scholar 

  18. Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure. Physica A 380, 673–683 (2007)

    Article  Google Scholar 

  19. Kim, D.H., Motter, A.E.: Fluctuation-driven capacity distribution in complex networks. New J. Phys. 10(5), 053022 (2008)

    Article  Google Scholar 

  20. Arqub, O.A., Abo-Hammour, Z.: Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inform. Sci. 279, 396–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ivanov, D.: An adaptive framework for aligning (re) planning decisions on supply chain strategy, design, tactics, and operations. Int. J. Prod. Res. 48(13), 3999–4017 (2010)

    Article  MATH  Google Scholar 

  22. Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logist. Manag. 15(2), 1–14 (2004)

    Article  Google Scholar 

  23. Blackhurst, J., Wu, T., O’grady, P.: A network-based decision tool to model uncertainty in supply chain operations. Prod. Plan Control 18(6), 526–535 (2007)

    Article  Google Scholar 

  24. Bellamy, M., Basole, R.: Network analysis of supply chain systems: a systematic review and future research. Syst. Eng. 16(2), 235–249 (2013)

    Article  Google Scholar 

  25. Rice, J.B., Caniato, F.: Building a secure and resilient supply network. Supply Chain Manag. Rev. 7(5), 22–30 (2003)

    Google Scholar 

  26. Jüttner, U., Maklan, S.: Supply chain resilience in the global financial crisis: an empirical study. Supply Chain Manag. 16(4), 246–259 (2011)

    Article  Google Scholar 

  27. Hearnshaw, E., Wilson, M.: A complex network approach to supply chain network theory. Int. J. Oper. Prod. Man. 33(4), 442–469 (2013)

    Article  Google Scholar 

  28. Tang, L., Jing, K., He, J., Stanley, H.E.: Robustness of assembly supply chain networks by considering risk propagation and cascading failure. Physica A 459, 129–139 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yan, Y., Liu, X., Zhuang, X.T.: Cascading failure model and method of supply chain based on complex network. J. Shanghai Jiaotong Univ. 44(3), 322–325 (2010)

    MATH  Google Scholar 

  30. Zeng, Y., Xiao, R.B.: Modelling of cluster supply network with cascading failure spread and its vulnerability analysis. Int. J. Prod. Res. 52(23), 6938–6953 (2014)

    Article  Google Scholar 

  31. Geng, L., Xiao, R.B., Xie, S.S.: Research on self-organization in resilient recovery of cluster supply chains. Discrete Dyn. Nat. Soc. 2013, 1–11 (2013)

    Article  Google Scholar 

  32. Tang, L., Jing, K., He, J., Stanley, H.E.: Complex interdependent supply chain networks: cascading failure and robustness. Physica A 443, 58–69 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wang, Y.C., Xiao, R.B.: An ant colony based resilience approach to cascading failures in cluster supply network. Physica A 462, 150–166 (2016)

    Article  MathSciNet  Google Scholar 

  34. Sheffi, Y.: Supply chain management under the threat of international terrorism. Int. J. Logist. Manag. 12(2), 1–11 (2001)

    Article  MathSciNet  Google Scholar 

  35. Norrman, A., Jansson, U.: Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manag. 34(5), 434–456 (2004)

    Article  Google Scholar 

  36. Pettit, T.J., Fiksel, J., Croxton, K.L.: Ensuring supply chain resilience: development of a conceptual framework. J. Bus. Logist. 31(1), 1–21 (2010)

    Article  Google Scholar 

  37. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)

    Article  Google Scholar 

  38. Macdonald, P.J., Almaas, E., Barabási, A.L.: Minimum spanning trees of weighted scale-free networks. EPL Europhys. Lett. 72(2), 308 (2005)

    Article  Google Scholar 

  39. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Physica A 424, 175–308 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9), 098701 (2004)

    Article  Google Scholar 

  41. Duan, D.L., Ling, X.D., Wu, X.Y., OuYang, D.H., Zhong, B.: Critical thresholds for scale-free networks against cascading failures. Physica A 416, 252–258 (2014)

    Article  Google Scholar 

  42. Duan, D.L., Wu, X.Y.: Cascading failure of scale-free networks based on a tunable load redistribution model. Acta Phys. Sin. 63(3), 030501 (2014)

    Google Scholar 

  43. Wang, J.W., Rong, L.L.: A model for cascading failures in scale-free networks with a breakdown probability. Physica A 388, 1289–1298 (2009)

    Article  Google Scholar 

  44. Liu, J., Xiong, Q., Shi, X., Wang, K., Shi, W.: Robustness of complex networks with an improved breakdown probability against cascading failures. Physica A 456, 302–309 (2016)

    Article  Google Scholar 

  45. Chopra, S., Sodhi, M.: Managing risk to avoid supply-chain breakdown. MIT Sloan Manag. Rev. 46(1), 53–61 (2004)

    Google Scholar 

  46. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B 46(1), 101–107 (2005)

    Article  Google Scholar 

  47. Crucitti, P., Latora, V., Marchiori, M.: A topological analysis of the Italian electric power grid. Physica A 338(1), 92–97 (2004)

    Article  Google Scholar 

  48. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  49. Choi, T.Y., Hong, Y.: Unveiling the structure of supply networks: case studies in Honda, Acura, and DaimlerChrysler. J. Oper. Manag. 20(5), 469–493 (2002)

    Article  Google Scholar 

  50. Hur, D., Hartley, J.K., Hahn, C.K.: An exploration of supply chain structure in Korean companies. Int. J. Logist. Res. App. 7(2), 151–164 (2004)

    Article  Google Scholar 

  51. Sun, H., Wu, J.: Scale-free characteristics of supply chain distribution networks. Mod. Phys. Lett. B 19(17), 841–850 (2005)

    Article  Google Scholar 

  52. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Klemm, K., Eguiluz, V.M.: Growing scale-free networks with small-world behavior. Phys. Rev. E 65(5), 057102 (2002)

    Article  Google Scholar 

  54. Cardoso, S.R., Barbosa-Póvoa, A.P., Relvas, S., Novais, A.Q.: Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega 56, 53–73 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful suggestions from the anonymous reviewers. This work is supported by the National Natural Science Foundation of China (Grant No. 61702463) and the Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingcong Wang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, F. Modeling and analysis of under-load-based cascading failures in supply chain networks. Nonlinear Dyn 92, 1403–1417 (2018). https://doi.org/10.1007/s11071-018-4135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4135-z

Keywords

Navigation