Skip to main content
Log in

Nonlinear fuzzy fault-tolerant control of hypersonic flight vehicle with parametric uncertainty and actuator fault

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents a nonlinear fuzzy fault-tolerant control (FTC) and a fault observer for longitudinal dynamics of hypersonic flight vehicle (HFV) with parameter uncertainty and actuator gain loss fault via sliding-mode and backstepping theory. An affine nonlinear dynamic model of HFV with parameter uncertainty and actuator fault is established based on feedback linearization technology. A nominal sliding-mode control is developed to track the command of altitude and velocity. Unknown nonlinear functions in the controller are approximated by fuzzy logic system through updating the weight parameters online. In view of the occurrence of actuator fault, a backstepping sliding-mode observer is constructed to estimate the fault. A nonlinear fuzzy FTC is then designed with the estimate fault obtained from the observer to address the problem of actuator fault and parameter uncertainty. The stability of the controller is analyzed utilizing Lyapunov theory. Numerical simulation results demonstrate the validity and robustness of the proposed controller and observer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(\alpha \) :

Angle of attack, rad

\(\bar{c}\) :

Reference length, 80 ft

\(\beta _{\mathrm{Tc}}\) :

Desirable throttle setting, \(\%/100\)

\(\beta _{\mathrm{T}}\) :

Throttle setting, \(\%/100\)

\(\delta _{\mathrm{e}}\) :

Elevator deflection, rad

\(\gamma \) :

Flight-path angle, rad

\(\mu \) :

Gravitational constant, ft \(^3\)/s\(^2\)

\(\omega _{\mathrm{n}}\) :

Frequency of engine system, rad/s

\(\rho \) :

Density of air, slug/ft\(^3\)

\(\xi _\mathrm{n}\) :

Damping of engine system

\(c_\mathrm{e}\) :

Constant, 0.0292

\(C_{\mathrm{D}}\) :

Drag coefficient

\(C_{\mathrm{L}}\) :

Lift coefficient

\(C_{\mathrm{M}}(\alpha )\) :

Moment coefficient due to angle of attack

\(C_{\mathrm{M}}(\delta _{\mathrm{e}})\) :

Moment coefficient due to elevator deflection

\(C_{\mathrm{M}}(q)\) :

Moment coefficient due to pitch rate

\(C_{\mathrm{T}}\) :

Thrust coefficient

D :

Drag, lbf

h :

Altitude, ft

\(h_\mathrm{d}\) :

Reference altitude, ft

\(I_{\mathrm{yy}}\) :

Moment of inertia, slug-ft\(^2\)

L :

Lift, lbf

m :

Mass, slug

\(M_{\mathrm{yy}}\) :

Pitching moment, lbf-ft

q :

Pitch rate, rad/s

r :

Radial distance from Earth’s center, ft

\(R_\mathrm{e}\) :

Earth radius, ft

S :

Reference aerodynamic area, ft\(^2\)

T :

Thrust, lbf

V :

Velocity, ft/s

\(V_\mathrm{d}\) :

Reference velocity, ft/s

HFV:

Hypersonic flight vehicle

FTC:

Fault-tolerant control

SMC:

Sliding-mode control

SMO:

Sliding-mode observer

FLS:

Fuzzy logic system

NN:

Neural networks

References

  1. Xu, B., Shi, Z.K.: An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci. 58(7), 1–19 (2015)

    MathSciNet  Google Scholar 

  2. Shen, Q., Shi, P., Jiang, B.: Fault Diagnosis and Fault-Tolerant Control Based on Adaptive Control Approach. Springer International Publishing, New York (2017)

    Book  MATH  Google Scholar 

  3. Shen, Q., Jiang, B., Cocquempot, V.: Fault-tolerant control for TCS fuzzy systems with application to near-space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Syst. 20(4), 652–665 (2011)

    Article  Google Scholar 

  4. Gao, Z., Jiang, B., Gong, H., Xu, Y.: Fault-tolerant sliding mode control design for near space vehicle based on T-S fuzzy model. In: Fourth International Conference on Innovative Computing, Information and Control, pp. 211–214 (2009)

  5. Hu, X.X., Wu, L.G., Hu, C.H., Gao, H.J.: Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle. J. Frankl. Inst. Eng. Appl. Math. 349(2), 559–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, J., Wu, Y., Dong, X.: Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer. Nonlinear Dyn. 81(3), 1489–1510 (2015)

    Article  MATH  Google Scholar 

  7. Zhou, L., Yin, L.: Dynamic surface control based on neural network for an air-breathing hypersonic vehicle. Optim. Control Appl. Methods 36(6), 774–793 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, N., Wu, H.N., Guo, L.: Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn. 78(3), 2141–2159 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou, D., Wang, Q., Dong, C.: Output feedback dynamic surface controller design for airbreathing hypersonic flight vehicle. IEEE/CAA J. Autom. Sin. 2(2), 186–197 (2015)

    Article  MathSciNet  Google Scholar 

  10. Sun, H., Li, S., Sun, C.: Robust adaptive integral-sliding-mode fault-tolerant control for airbreathing hypersonic vehicles. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226(10), 1344–1355 (2012)

    Article  Google Scholar 

  11. Rehman, O.U., Petersen, I.R., Fidan, B.: Robust nonlinear control design of a hypersonic flight vehicle using minimax linear quadratic Gaussian control. In: Decision and Control. IEEE, pp 6219–6224 (2010)

  12. Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)

    Google Scholar 

  13. Hu, Y., Sun, F., Liu, H.: Neural network-based robust control for hypersonic flight vehicle with uncertainty modelling. Int. J. Modell. Identif. Control 11(1/2), 87–98 (2010)

    Article  Google Scholar 

  14. Yang, F., Yuan, R., Yi, J.: Direct adaptive type-2 fuzzy neural network control for a generic hypersonic flight vehicle. Soft. Comput. 17(11), 2053–2064 (2013)

    Article  MATH  Google Scholar 

  15. Guan, P., Xue, L., Liu, X.H., et al.: The adaptive fuzzy sliding mode control of hypersonic vehicle. In: 10th World Congress on Intelligent Control and Automation, Beijing, China, pp 51–56 (2012)

  16. Xu, B.: Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn. 80(3), 1509–1520 (2015)

  17. He, J., Qi, R., Jiang, B., Qian, J.: Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles. J. Franklin Inst. 352(5), 1811–1835 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wang, S.X., Zhang, Y., Jin, Y.Q.: Neural control of hypersonic flight dynamics with actuator fault and constraint. Sci. China Inf. Sci. 58(7), 70206–070206 (2015)

    MathSciNet  Google Scholar 

  19. Xu, Y., Jiang, B., Tao, G.: Fault tolerant control for a class of nonlinear systems with application to near space vehicle. Circuits Syst. Signal Process. 30(3), 655–672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J.S., Yang, G.H.: Data-driven output-feedback fault-tolerant compensation control for digital pid control systems with unknown dynamics. IEEE Trans. Ind. Electron. 63(11), 7029–7039 (2016)

    Article  Google Scholar 

  21. Xu, B., Zhang, Q., Pan, Y.: Neural network based dynamic surface control of hypersonic flight dynamics using small-gain theorem. Neurocomputing 173(P3), 690–699 (2016)

    Article  Google Scholar 

  22. Yu, X., Liu, Z., Zhang, Y.: Fault-tolerant flight control design with finite-time adaptation under actuator stuck failures. IEEE Trans. Control Syst. Technol. PP 99, 1–10 (2016)

    Google Scholar 

  23. Yu, X., Zhang, Y., Liu, Z.: Fault-tolerant flight control design with explicit consideration of reconfiguration transients. J. Guid. Control Dyn. 39(3), 556–563 (2016)

    Article  Google Scholar 

  24. Laghrouche, S., Liu, J., Ahmed, F.S.: Adaptive second-order sliding mode observer-based fault reconstruction for pem fuel cell air-feed system. IEEE Trans. Control Syst. Technol. 23(3), 1098–1109 (2015)

    Article  Google Scholar 

  25. Edwards, C., Patton, R.J., Spurgeon, S.K.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tong, S.C., Li, Y.M., Feng, G.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B. 41(4), 1124–1135 (2011)

    Article  Google Scholar 

  27. Marrison, C.I., Stengel, R.F.: Design of Robust Control System for a Hypersonic Aircraft. J. Guid. Control Dyn. 21(1), 58C62 (1998)

    Article  MATH  Google Scholar 

  28. Wang, Q., Stengel, R.F.: Robust nonlinear control of a hypersonic aircraft. J. Guid. Control Dyn. 23(4), 577C585 (2000)

    Article  Google Scholar 

  29. Chen, F., Wang, Z., Tao, G., et al.: Robust adaptive fault-tolerant control for hypersonic flight vehicles with multiple faults[J]. J. Aerosp. Eng. 28(4), 04014111 (2015)

    Article  Google Scholar 

  30. Ji, Y., Zhou, H., Zong, Q.: Adaptive active fault-tolerant control of generic hypersonic flight vehicles[J]. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 229(2), 130–138 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (61533009, 61473146), a project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyang Chen.

Appendix

Appendix

The detailed expressions of the vectors about feedback linearization matrices are as follows:

$$\begin{aligned} \ddot{\gamma }= & {} {\pi _1}\dot{z}\\ \dddot{\gamma }= & {} {\pi _1}\ddot{z} + {\dot{z}^T}{\pi _2}\dot{z}\\ {{\ddot{\alpha }}_0}= & {} - \,{\pi _1}\dot{z} + \frac{{0.5\rho {V^2}S\bar{c}}}{{{I_\mathrm{yy}}}}({C_\mathrm{M}}(\alpha ) + {C_\mathrm{M}}(q) - 0.0292\alpha ) \\ {{\ddot{\alpha }}_{{\delta _\mathrm{e}}}}= & {} 0.0292\frac{{0.5\rho {V^2}S\bar{c}}}{{{I_\mathrm{yy}}}} \\ \ddot{\alpha }= & {} {\ddot{\alpha }_0} + {\ddot{\alpha }_{{\delta _\mathrm{e}}}}{\delta _\mathrm{e}} \\ {\ddot{\beta }_\mathrm{T}}= & {} -\, 2{\xi _\mathrm{n}}{\omega _\mathrm{n}}{\dot{\beta }_\mathrm{T}} - \omega _\mathrm{n}^2{\beta _\mathrm{T}} + \omega _\mathrm{n}^2{\beta _{\mathrm{Tc}}} = {\ddot{\beta }_0} + \omega _\mathrm{n}^2{\beta _{\mathrm{Tc}}} \\ {z_0}= & {} \left[ {\begin{array}{*{20}{c}} {\ddot{V}}\quad {\ddot{\gamma }} \quad {{{\ddot{\alpha }}_0}} \quad {{{\ddot{\beta }}_0}} \quad {\ddot{h}} \end{array}} \right] \\ \ddot{z}= & {} {\ddot{z}_0} + {u^T}{\ddot{z}_u}\\ {F_V}= & {} \frac{{{\omega _1}{{\ddot{z}}_0} + {{\dot{z}}^T}{\omega _2}\dot{z}}}{m}\\ {F_h}= & {} 3\ddot{V}\dot{\gamma }\cos \gamma - 3\dot{V}{{\dot{\gamma }}^2}\sin \gamma + 3\dot{V}\ddot{\gamma }\cos \gamma \\&-\,3V\dot{\gamma }\ddot{\gamma }\sin \gamma - V{{\dot{\gamma }}^3}\cos \gamma + {F_v}\sin \gamma \\&+\, V({\pi _1}{{\ddot{z}}_0} +{{\dot{z}}^T}{\pi _2}\dot{z})cos\gamma \\ {g_{11}}= & {} \frac{{\frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\cos \alpha }}{m}\omega _\mathrm{n}^2\\ {g_{12}}= & {} \frac{{\frac{{\partial T}}{{\partial \alpha }}\cos \alpha - T\sin \alpha - \frac{{\partial D}}{{\partial \alpha }}}}{m}{{\ddot{\alpha }}_{{\delta _\mathrm{e}}}}\\ {g_{21}}= & {} \frac{{\frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\sin (\alpha + \gamma )}}{m}\omega _\mathrm{n}^2\\ {g_{22}}= & {} \frac{{\ddot{\alpha }}_{{\delta _\mathrm{e}}}}{m}\left( {{\frac{{\partial T}}{{\partial \alpha }}}}\sin (\alpha + \gamma ) + T\cos (\alpha + \gamma )\right. \\&+ \left. {{\frac{{\partial L}}{{\partial \alpha }}} }\cos \gamma - {{\frac{{\partial D}}{{\partial \alpha }}} }\sin \gamma \right) \\ {\omega _1}= & {} {\left[ {\begin{array}{*{20}{c}} {\frac{{\partial T}}{{\partial V}}\cos \alpha - \frac{{\partial D}}{{\partial V}}}\\ { - \,\frac{{m\mu \cos \gamma }}{{{r^2}}}}\\ { -\, T\sin \alpha - \frac{{\partial D}}{{\partial \alpha }}}\\ {\frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\cos \alpha }\\ {\frac{{2m\mu \sin \gamma }}{{{r^3}}}} \end{array}} \right] ^T}\\ {\omega _2}= & {} \left[ {\begin{array}{*{20}{c}} {{\omega _{21}}}&{{\omega _{22}}}&{{\omega _{23}}}&{{\omega _{24}}}&{{\omega _{25}}} \end{array}} \right] \\ {\omega _{21}}= & {} \left[ {\begin{array}{*{20}{c}} {\frac{{{\partial ^2}T}}{{{\partial ^2}V}}\cos \alpha - \frac{{{\partial ^2}D}}{{{\partial ^2}V}}}\\ 0\\ { - \,\frac{{\partial T}}{{\partial V}}\sin \alpha - \frac{{{\partial ^2}D}}{{\partial V\partial \alpha }}}\\ {\frac{{{\partial ^2}T}}{{\partial V\partial {\beta _\mathrm{T}}}}\cos \alpha }\\ 0 \end{array}} \right] \\ {\omega _{22}}= & {} \left[ {\begin{array}{*{20}{c}} 0\\ {\frac{{m\mu \sin \gamma }}{{{r^2}}}}\\ 0\\ 0\\ {\frac{{2m\mu \cos \gamma }}{{{r^3}}}} \end{array}} \right] \\ \end{aligned}$$
$$\begin{aligned} {\omega _{23}}= & {} \left[ {\begin{array}{*{20}{c}} { - \,\frac{{\partial T}}{{\partial V}}\sin \alpha - \frac{{{\partial ^2}D}}{{\partial V\partial \alpha }}}\\ 0\\ { -\, T\cos \alpha - \frac{{{\partial ^2}D}}{{{\partial ^2}\alpha }}}\\ { -\, \frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\sin \alpha }\\ 0 \end{array}} \right] \\ {\omega _{24}}= & {} \left[ {\begin{array}{*{20}{c}} {\frac{{{\partial ^2}T}}{{\partial V\partial {\beta _\mathrm{T}}}}\cos \alpha }\\ 0\\ { -\, \frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\sin \alpha }\\ 0\\ 0 \end{array}} \right] \\ {\omega _{25}}= & {} \left[ {\begin{array}{*{20}{c}} 0\\ {\frac{{2m\mu \cos \mathrm{{\gamma }}}}{{{r^3}}}}\\ 0\\ 0\\ { -\, \frac{{6m\mu \mathrm{{cos\gamma }}}}{{{r^4}}}} \end{array}} \right] \\ {\pi _1}= & {} {\left[ {\begin{array}{*{20}{c}} {\frac{{\frac{{\partial L}}{{\partial V}} + \frac{{\partial T}}{{\partial V}}\sin \alpha }}{{mV}} - \frac{{L + T\sin \alpha }}{{m{V^2}}} + \frac{{\mu \cos \gamma }}{{{V^2}{r^2}}} + \frac{{\cos \gamma }}{r}}\\ {\frac{{\mu \sin \gamma }}{{V{r^2}}} - \frac{{V\sin \gamma }}{r}}\\ {\frac{{\frac{{\partial L}}{{\partial \alpha }} + T\cos \alpha }}{{mV}}}\\ {\frac{{\frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\sin \alpha }}{{mV}}}\\ {\frac{{2\mu \cos \gamma }}{{V{r^3}}} - \frac{{V\cos \gamma }}{{{r^2}}}} \end{array}} \right] ^T}\\ {\pi _2}= & {} \left[ {\begin{array}{*{20}{c}} {{\pi _{21}}}&{{\pi _{22}}}&{{\pi _{23}}}&{{\pi _{24}}}&{{\pi _{25}}} \end{array}} \right] \\ {\pi _{22}}= & {} \left[ {\begin{array}{*{20}{c}} { -\, \frac{{\mu \sin \gamma }}{{{V^2}{r^2}}} - \frac{{\sin \gamma }}{r}}\\ {\frac{{\mu \cos \gamma }}{{V{r^2}}} - \frac{{V\cos \gamma }}{r}}\\ 0\\ 0\\ { - \,\frac{{2\mu \sin \gamma }}{{V{r^3}}} + \frac{{V\sin \gamma }}{{{r^2}}}} \end{array}} \right] \\ {\pi _{23}}= & {} \left[ {\begin{array}{*{20}{c}} {\frac{{\frac{{{\partial ^2}L}}{{\partial \alpha \partial V}} + \left( \frac{{\partial T}}{{\partial V}}\right) \cos \alpha }}{{mV}} - \frac{{\frac{{\partial L}}{{\partial \alpha }} + T\cos \alpha }}{{m{V^2}}}}\\ 0\\ {\frac{{\frac{{{\partial ^2}L}}{{{\partial ^2}\alpha }} - T\sin \alpha }}{{mV}}}\\ {\frac{{\left( \frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\right) \cos \alpha }}{{mV}}}\\ 0 \end{array}} \right] \\ {\pi _{24}}= & {} \left[ {\begin{array}{*{20}{c}} {\frac{{\left( \frac{{{\partial ^2}T}}{{\partial {\beta _\mathrm{T}}\partial V}}\right) \sin \alpha }}{{mV}} - \frac{{\left( \frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\right) \sin \alpha }}{{m{V^2}}}}\\ 0\\ {\frac{{\left( \frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}}\right) \cos \alpha }}{{mV}}}\\ 0\\ 0 \end{array}} \right] \\ \end{aligned}$$
$$\begin{aligned} {\pi _{25}}= & {} \left[ {\begin{array}{*{20}{c}} { -\, \frac{{2\mu \cos \gamma }}{{{V^2}{r^3}}} - \frac{{\cos \gamma }}{{{r^2}}}}\\ { -\, \frac{{2\mu \sin \gamma }}{{V{r^3}}} + \frac{{V\sin \gamma }}{{{r^2}}}}\\ 0\\ 0\\ { -\, \frac{{6\mu \cos \gamma }}{{V{r^4}}} + \frac{{2V\cos \gamma }}{{{r^3}}}} \end{array}} \right] \\ {\pi _{21}}= & {} \left[ {\begin{array}{*{20}{c}} \begin{array}{c} \frac{{\frac{{{\partial ^2}L}}{{{\partial ^2}V}} \,+\, \left( \frac{{{\partial ^2}T}}{{{\partial ^2}V}}\right) \sin \alpha }}{{mV}} - \frac{{2\left( \frac{{\partial L}}{{\partial V}} \,+\, \left( \frac{{\partial T}}{{\partial V}}\right) \sin \alpha \right) }}{{m{V^2}}} \\ +\, \frac{{2(L \,+\, T\sin \alpha )}}{{m{V^3}}} - \frac{{2\rho \cos \gamma }}{{{V^3}{r^2}}} \\ \end{array} \\ { -\, \frac{{\rho \sin \gamma }}{{{V^2}{r^2}}} - \frac{{\sin \gamma }}{r}} \\ {\frac{{\frac{{{\partial ^2}L}}{{\partial \alpha \partial V}} \,+\, \left( \frac{{\partial T}}{{\partial V}}\right) \cos \alpha }}{{mV}} - \frac{{\frac{{\partial L}}{{\partial \alpha }} \,+\, T\cos \alpha }}{{m{V^2}}}} \\ {\frac{{\left( \frac{{{\partial ^2}T}}{{\partial {\beta _\mathrm{T}}\partial V}}\right) \sin \alpha }}{{mV}} - \frac{{(\frac{{\partial T}}{{\partial {\beta _\mathrm{T}}}})\sin \alpha }}{{m{V^2}}}} \\ { -\, \frac{{2\rho \cos \gamma }}{{{V^2}{r^3}}} - \frac{{\cos \gamma }}{{{r^2}}}} \\ \end{array}} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Chen, F. & Tao, G. Nonlinear fuzzy fault-tolerant control of hypersonic flight vehicle with parametric uncertainty and actuator fault. Nonlinear Dyn 92, 1299–1315 (2018). https://doi.org/10.1007/s11071-018-4127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4127-z

Keywords

Navigation